Tìm n thuộc Z để \(n^2+n+1\) là số chính phương
1) CMR: A= 999...9800...0 1 là số chính phương
n chữ số 9 n c/số 0
2) Tìm n thuộc N để n^2+5 là số chính phương
3) Tìm n thuộc N* để n^2-2n+8 là số chính phương
tìm n thuộc Z để các số sau là số chính phương n^4+n^3+n^2
Ta có: \(n^4+n^3+n^2=n^2\left(n^2+n+1\right)\)
Theo đề ra thì \(n^2\left(n^2+n+1\right)\) mà \(n^2\)là một số chính phương \(\Rightarrow n^2+n+1\)là 1 số chính phương.
Gọi \(n^2+n+1=k^2\) =>\(4n^2+4n+1+3\)= \(4k^2\)
=> \(\left(2n+1\right)^2+3=4k^2\) => \(\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)
\(\Leftrightarrow2k-2n-1;2k+2n+1\inƯ\left(3\right)=\left\{3;1;-3;-1\right\}\)Và \(2k-2n-1;2k+2n+1\)phải đồng âm hoặc đồng dương,
Ta có bảng sau:
\(2k-2n-1\) | 1 | 3 | -1 | -3 |
\(2k+2n+1\) | 3 | 1 | -3 | -1 |
\(2k-2n\) | 2 | 4 | 0 | -2 |
\(2k+2n\) | 2 | 0 | -4 | -2 |
\(n\) | 0 | -1 | -1 | 0 |
Vậy n thỏa mãn đề bài là n=0 hoặc n=-1
mọi người giúp mk vs nha,mk đang cần gắp lắm ạ
1.chứng minh rằng với mọi n thuộc N số A=9n^2+27n+7 không thể là lập phương đúng
2.tìm n thuộc N sao cho 9+2^n là số chính phương
3.tìm n thuộc N sao cho 3^n+19 là số chính phương
4.tìm n thuộc Z sao cho n^4+2n^3+2n^2+n+7 là số chính phương
tìm n thuộc Z để biểu thức sau là 1 số chính phương:
a) n2 -n+2
b) n5 -n+2
tìm n thuộc Z để n+1955 và n+2014 là số chính phương
\(n+1995=a^2,n+2014=b^2\)
Trừ vế theo vế ta được:
\(b^2-a^2=59\)
\(\Leftrightarrow\left(b-a\right)\left(b+a\right)=59\)
Do \(59\)là số nguyên tố và \(b>a\)nên ta chỉ có một trường hợp:
\(\hept{\begin{cases}b-a=1\\b+a=59\end{cases}}\Leftrightarrow\hept{\begin{cases}b=30\\a=29\end{cases}}\)
Khi đó \(n=-1114\).
a) Tìm n thuộc Z để 2n2+3n+2 chia hết cho n+1
b) Tìm m,n thuộc Z biết mn-n-m=1
c) Cho m,n là 2 số chính phương lẻ liên tiếp
CMR: mn-m-n+1 chia hết cho 192
Tìm n thuộc z để n5-n+2 thuộc số chính phương
CM định lý nhỏ Fermat:
Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Ta thấy \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) là tích 5 STN nhỏ
=> \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) chia hết cho 5
Mà \(5n\left(n-1\right)\left(n+1\right)\) chia hết cho 5
=> \(n^5-n\) chia hết cho 5
=> \(n^5-n+2\) chia 5 dư 2, mà không tồn tại SCP nào chia 5 dư 2
=> \(n^5-n+2\) không là số chính phương với mọi số nguyên n
Xét biểu thức \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)Dễ thấy \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích của 5 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2, một số chia hết cho 5 suy ra \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮10\)(*)
\(\left(n-1\right)n\left(n+1\right)\)là tích 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2 suy ra \(5\left(n-1\right)n\left(n+1\right)⋮10\)(**)
Từ (*) và (**) suy ra \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)⋮10\)nên \(n^5-n\) có tận cùng bằng 0
Do đó \(n^5-n+2\)tận cùng bằng 2 mà số chính phương không tận cùng bằng 2 nên không tồn tại n để \(n^5-n+2\)là số chính phương
Cho phân số B= 4n+1/2n-3, ( n thuộc Z)
a) Tìm n để B có giá trị là số chính phương
b) Tìm n để B là phân số tối giản
c) Tìm n để B đạt GTLN
Bg
a) Ta có: B = \(\frac{4n+1}{2n-3}\) (n thuộc Z)
Để B là số chính phương (scp) thì 4n + 1 chia hết cho 2n - 3 (rồi sau đó xét tiếp)
=> 4n + 1 ⋮ 2n - 3
=> 4n + 1 - 2(2n - 3) chia hết cho 2n - 3
=> 4n + 1 - (2.2n - 2.3) chia hết cho 2n - 3
=> 4n + 1 - (4n - 6) chia hết cho 2n - 3
=> 4n + 1 - 4n + 6 chia hết cho 2n - 3
=> 4n - 4n + 1 + 6 chia hết cho 2n - 3
=> 7 chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
Ư(7) = {1; 7; -1; -7}
Lập bảng:
2n - 3 = | 1 | 7 | -1 | -7 |
n = | 2 | 5 | 1 | -2 |
(loại vì không phải scp) | (loại) | (loại) |
Vậy n = {2; -2} thì B là số chính phương
b) Để B là phân số tối giản thì 4n + 1 không chia hết cho 2n - 3 (ta chỉ cần loại những số n trong bảng)
=> n không thuộc {2; 5; 1; -2}
c) Để B đạt giá trị lớn nhất (GTLN) thì 2n - 3 nhỏ nhất và > 0
=> 2n - 3 = 1
=> 2n = 1 + 3
=> 2n = 4
=> n = 4 : 2
=> n = 2
Vậy n = 2 thì B đạt GTLN
b) B =\(\frac{4n+1}{2n-3}\) . Để B là phân số tối giản => (4n+1,2n-3) = 1. Ta lại đặt: (4n+1,2n-3) = d
=> 4n + 1\(⋮\)d, 2n - 3\(⋮\)d => 4n +1- 2(2n-3)\(⋮\)d => 7\(⋮\)d
=> Để d =1 => d\(\ne\)7 => \(\orbr{\begin{cases}4n+1\ne7k\\2n-3\ne7k'\end{cases}\Rightarrow\orbr{\begin{cases}n\ne\frac{7k-1}{4}\\n\ne\frac{7k'+3}{2}\end{cases}\left(k,k'\right)\in}ℤ}\)
c) B =\(\frac{4n+1}{2n-3}\Rightarrow B=\frac{2\left(2n-3\right)+7}{2n-3}\Rightarrow B=2+\frac{7}{2n-3}\).
Để B đạt giá trị nhỏ nhất: \(\Rightarrow\frac{7}{2n-3}\)phải đặt giá trị âm lớn nhất => 2n-3 phải đặt giá trị âm lớn nhất.
2n - 3 <0 => n <\(\frac{3}{2}\)=> n < 1 => n = 1 là giá trị cần tìm.
Khi đó Bmin =\(2+\frac{7}{2.1-3}=2-7=-5\). Tương tự để Bmax => \(\frac{7}{2n-3}\) phải đặt giá trị dương lớn nhất.
=> 2n - 3 đặt giá trị dương nhỏ nhất .
Tìm n thuộc Z để\(x^2+7x\)là số chính phương
Tìm n thuộc Z sao cho
61-(n-1)^2 là số chính phương