Hàm số f ( x ) = x + 3 - a x - b ( x - 1 ) 2 c x > 1 c x ≤ 1 . Để hàm số f(x) liên tục trên R thì giá trị của tổng 2a+b+16c tương ứng bằng
A. 1
B. 0
C. 3
D. 2
Hàm số f(x )có đạo hàm trên R là hàm số f'(x). Biết đồ thị hàm số f'(x), hàm số f(x) nghịch biến trên khoảng:
A. 0 ; + ∞
B. 1 3 ; 1
C. - ∞ ; 1 3
D. - ∞ ; 0
Cho hàm số f(x)=1/x. Nếu F(x) là một nguyên hàm của hàm số f(x) và đồ thị hàm số y=F(x) đi qua M(-1;0) thì F(x) là
Hàm số f(x) có đạo hàm trên là hàm số f'(x). Biết đồ thị hàm số f'(x) được cho như hình vẽ. Hàm số f(x) nghịch biến trên khoảng
A. 0 ; + ∞
B. 1 3 ; 1
C. − ∞ ; 1 3
D. − ∞ ; 0
Đáp án D
f ' x < 0 ⇔ x < 0 do đó hàm số nghịch biến trên − ∞ ; 0
Cho hàm số y= f(x) . Biết f(x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ.
Hàm số g( x) = f(x- 1) đạt cực đại tại điểm nào dưới đây?
A. x= 2
B. x= 4
C . x= 3
D. x= 1
Chọn B
+ Dựa vào đồ thị hàm số ta thấy :
- Hàm số y= f( x) nghịch biến trên khoảng ( - ∞; 1) và ( 3; 5) .
- Hàm số y= f( x) nghịch biến trên khoảng ( 1 ; 3) và ( 5 ; + ∞)
Bài 1: Xét tính đơn điệu của hàm số \(y=f(x)\) khi biết đạo hàm của hàm số là:
a) \(f'(x)=(x+1)(1-x^2)(2x-1)^3\)
b) \(f'(x)=(x+2)(x-3)^2(x-4)^3\)
Bài 2: Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=x(x+1)(x-2)\). Xét tính biến thiên của hàm số:
a) \(y=f(2-3x)\)
b) \(y=f(x^2+1)\)
c) \(y=f(3x+1)\)
Cho hàm số f ( x ) = x 2 ( x - 1 ) e 3 x có một nguyên hàm là hàm số f(x). Số điểm cực trị của hàm số f(x) là
A. 1
B. 2
C. 3
D. 0
Hàm số f(x) có đạo hàm trên R là hàm số f’(x). Biết đồ thị hàm số f’(x)được cho như hình vẽ bên. Hàm số f(x) nghịch biến trên khoảng nào dưới đây?
A. − ∞ ; 0
B. 0 ; + ∞
C. − ∞ ; 1 3
D. 1 3 ; 1
Hàm số f (x) có đạo hàm trên ℝ là hàm số f '(x). Biết đồ thị hàm số f '(x) được cho như hình vẽ bên. Hàm số f (x) nghịch biến trên khoảng nào dưới đây?
A. - ∞ ; 0
B. 0 ; + ∞
C. - ∞ ; 1 3
D. 1 3 ; 1
Cho F(x) = 1 2 x 2 là 1 nguyên hàm của hàm số f ( x ) x . Tìm nguyên hàm của hàm số f'(x)lnx
Cho F ( x ) = - 1 3 x 3 là một nguyên hàm của hàm số f ( x ) x Tìm nguyên hàm của hàm số f'(x)lnx