1. tìm x
b)(x3+5).(x3+10).(x3+15).(x3+30)<0
3 like cách làm
Tìm x ϵ Z để ( x3+5)( x3+10)(x3+15)(x3+30) <0
\(TH_1:x\ge0\Leftrightarrow x^3\ge0\Leftrightarrow VT>0\left(loại\right)\)
\(TH_2:x< 0\)
Với \(x=-1\Leftrightarrow VT=4\cdot9\cdot14\cdot29>0\left(loại\right)\)
Với \(x=-2\Leftrightarrow VT=-3\cdot2\cdot7\cdot23< 0\left(nhận\right)\)
Với \(x=-3\Leftrightarrow VT=-22\left(-17\right)\left(-12\right)\cdot3< 0\left(nhận\right)\)
Với \(x< -4\Leftrightarrow x^3< -64\Leftrightarrow x^3+5< x^3+10< x^3+15< x^3+30< 0\)
Do đó cả 4 thừa số trong tích đều âm nên tích này luôn dương
Vậy \(x\in\left\{-2;-3\right\}\)
Bài 1: Số(−3)20+1(−3)20+1 có phải là tích của hai số nguyên liên tiếp không?
Bài 2: Tìm x∈Zx∈Z biết (x+5)x (3x-12)>0
Bài 3: Tìmx∈Zx∈Z biết (x3+5)(x3+10)(x3+15)(x3+30)<0
tính:
a.3,6:1,2 x3 :0,3
b .3,6 :12 x3 +5 x10 -30
c.3,6 :(1,2 x3 )+ 5x (10:2 x5 )-30
d. 1500+4,5 :25 -1,5
Nhớ trình bày cách làm.
a. 3,6 : 1,2 x 3 : 0,3
= 3 x 10 = 30
b. 3,6 : 12 x 3 + 5 x 10 - 30
= 0,3 x 3 + 50 - 30
= 0,9 + 20 = 20,9
c. 3,6 : (1,2 x 3) + 5 x (10:2x5) - 30
= 3,6 ; 3,6 + 5 x 25 -30
= 1 + 125 - 30 = 96
d. 1500 + 4,5 : 25 - 1,5
= 1500 + 0,18 - 1,5
= 1500,18 - 1,5 = 1498,68
Nhớ cho m nha.
a. 3,6:1,2x3:0,3=(3,6:1,2)x(3:0,3)=3x10=30
b. 3,6:12x3+5x10-30=(3,6:12)x3+50-30=0,3x3+20=0,9+20=19,1
c. 3,6:(1,2x3)+5x(10:2x5)-30=3,6:3,6+5x25-30=1+125-30=96
d. 1500+4,5:25-1,5=1500+4,5:5:5-1,5=1500+0,9:5-1,5=1500+0,18-1,5=1500,18-1,5=1499,68
phấn b.các bạn thử tính lại xem . Phần B được 4 hai bạn ạ
Mong các bạn giúp mình bài toán này
Tìm x1,x2,x3,x4,x5 biết:
x1-1/5=x2-2/4=x3-3/3=x4-4/2=x5-5/1 và x1+x2+x3+x4+x5=30
Tìm X1 ,x2 ,x3,x4,x5
\(\frac{x1-1}{5}=\frac{x2-2}{4}=\frac{x3-3}{3}=\frac{x4-4}{2}=\frac{x5-5}{1}\)\(v\text{à}\)X1 +x2+x3+x4+x5 =30
Đặt \(\frac{x_1-1}{5}=\frac{x_2-2}{4}=\frac{x_3-3}{3}=\frac{x_4-4}{2}=\frac{x_5-5}{1}=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)
\(=\frac{x_1+x_2+x_3+x_4+x_5-15}{15}=\frac{30-15}{15}=1\)
\(\frac{x_1-1}{5}=1\Rightarrow x_1=6;\frac{x_2-2}{4}=1\Rightarrow x_2=6;\frac{x_3-3}{3}=1\Rightarrow x_3=6;\frac{x_4-4}{2}=1\Rightarrow x_4=6;\frac{x^5-5}{2}=1\Rightarrow x_5=6\)
Vậy \(x_1=x_2=x_3=x_4=x_5=6\)
Bài 5: Giải các phương trình sau:
a. (3x - 1)2 - (x + 3)2 = 0
b. x3 = \(\dfrac{x}{49}\)
c. x2 - 7x + 12 = 0
d. 4x2 - 3x -1 = 0
e. x3 - 2x - 4 = 0
f. x3 + 8x2 + 17x +10 = 0
g. x3 + 3x2 + 6x + 4 = 0
h. x3 - 11x2 + 30x = 0
a. (3x - 1)2 - (x + 3)2 = 0
\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)
\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)
\(\Leftrightarrow4x+2=0\) hoặc \(2x-4=0\)
1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)
2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)
S=\(\left\{-\dfrac{1}{2};2\right\}\)
b. \(x^3=\dfrac{x}{49}\)
\(\Leftrightarrow49x^3=x\)
\(\Leftrightarrow49x^3-x=0\)
\(\Leftrightarrow x\left(49x^2-1\right)=0\)
\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(7x+1=0\) hoặc \(7x-1=0\)
1. x=0
2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)
3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)
*Cách khác:
a) Ta có: \(\left(3x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(3x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=-x-3\\3x-1=x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-2\\2x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{2};2\right\}\)
C = ( x3 – 1)( x3 – 2)( x3 – 3) ……( x3 - 2014)( x3 – 2015) tại x = 5
\(C=\left(5^3-1\right)\cdot\left(5^3-2\right)\cdot...\cdot\left(5^3-125\right)\cdot...\cdot\left(5^3-2014\right)\cdot\left(5^3-2015\right)=0\)
Cho các số x1,x2,x3 thỏa mãn x1-1/3=x2-2/2=x3-3/1 và x1+x2+x3=30 . Khi đó x1+x2-x2+x3=???
cho các số x1;x2;x3 thỏa mãn: x1 - 1/3 x2-2/2 = x3-3/1 và x1+x2+x3=30 . khi đó x1.x2-x2.x3 = ?
x1 = 13 ; x2 = 10 ; x3 = 7
=> x1.x2-x2.x3=13.10-10.7=130-70=60
Phân tích các đa thức sau thành nhân tử:
1) x3 - 7x + 6
2) x3 - 9x2 + 6x + 16
3) x3 - 6x2 - x + 30
4) 2x3 - x2 + 5x + 3
5) 27x3 - 27x2 + 18x - 4
6) x2 + 2xy + y2 - x - y - 12
7) (x + 2)(x +3)(x + 4)(x + 5) - 24
8) 4x4 - 32x2 + 1
9) 3(x4 + x2 + 1) - (x2 + x + 1)2
10) 64x4 + y4
11) a6 + a4 + a2b2 + b4 - b6
12) x3 + 3xy + y3 - 1
13) 4x4 + 4x3 + 5x2 + 2x + 1
14) x8 + x + 1
15) x8 + 3x4 + 4
16) 3x2 + 22xy + 11x + 37y + 7y2 +10
17) x4 - 8x + 63
1) \(x^2-7x+6=x^3+1-7x-7=\left(x^3+1\right)-7\left(x+1\right)=\left(x+1\right)\left(x^2-x-6\right)\)
2) \(x^3-9x^2+6x+16\)
\(\left(x^3+1\right)-\left[\left(9x^2-6x+1\right)-16\right]\)
\(=\left(x^3+1\right)-\left[\left(3x-1\right)^2-16\right]=\left(x^3+1\right)-\left(3x-1+4\right)\left(3x-1-4\right)\)\(=\left(x^3+1\right)-3\left(3x-5\right)\left(x+1\right)\)\(=\left(x+1\right)\left[x^2-x+1-9x+15\right]=\left(x+1\right)\left(x^2-10x+16\right)\)
\(=\left(x+1\right)\left[x\left(x-2\right)-8\left(x-2\right)\right]\)\(\left(x+1\right)\left(x-2\right)\left(x-8\right)\)
3) \(x^3-6x^2-x+30\)
\(=x^3-5x^2-x^2+5x-6x+30\)
\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2-x-1\right)\)
4) \(2x^3-x^2+5x+3=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
5) \(27x^3-27x^2+18x-4=\left(27x^3-1\right)-\left(27x^2-18x+3\right)\)
\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(9x^2-6x+1\right)\)
\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(3x-1\right)^2\)
\(=\left(3x-1\right)\left(9x^2+3x+1-9x+3\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)
gửi phần này trước còn lại làm sau !!! tk mk nka !!!
6) \(\left(x+y\right)^2-\left(x+y\right)-12\)\(=\left(x+y\right)^2-2\cdot\frac{1}{2}\left(x+y\right)+\frac{1}{4}-\frac{49}{4}\)
\(=\left(x+y-\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)\(=\left(x+y-\frac{1}{2}-\frac{7}{2}\right)\left(x+y-\frac{1}{2}+\frac{7}{2}\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
7) \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\) (NHÂN x + 2 vs x + 5 và x + 3 vs x + 4 )
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
ĐẶT \(x^2+7x+11=y\) ta được :
\(\left(y+1\right)\left(y-1\right)-24=y^2-1-24\)
\(=y^2-25=\left(y-5\right)\left(y+5\right)\)
8) \(4x^4-32x^2+1=4x^4+4x^2+1-36x^2\)
\(=\left(2x^2+1\right)^2-\left(6x\right)^2\)\(=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)
9) sai đề rùi bạn ơi ! đề đúng nè
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
Ta thấy :
\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2\)\(=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Thay vào biểu thức bài cho ta được :
\(3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)
\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)
\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)
\(=2\left(x^2+x+1\right)\left(x-1\right)^2\)
bài ở trên câu 3 : kết luận là \(\left(x-3\right)\left(x^2-x-6\right)\)bạn sửa lại giúp mk nka !!! Th@nk !!! Tk Mk vs