Khối tứ diện đều có mấy mặt phẳng đối xứng.
A. 5.
B. 6.
C. 4.
D. 3.
Khối tứ diện đều có mấy mặt phẳng đối xứng
A. 4
B. 3
C. 6
D. 5
Chọn C
Các mặt phẳng đối xứng của khối tứ diện đều là các mặt phẳng chứa một cạnh và qua trung điểm cạnh đối diện.
Khối tứ diện đều có mấy mặt phẳng đối xứng
A.5
B.6
C.4
D.3
Chọn B.
Tứ diện đều có 6 mặt phẳng đối xứng.
Khối tứ diện đều có bao nhiêu mặt phẳng đối xứng
A. 3
B. 4
C. 6
D. 9
Đáp án là C
Mỗi mặt phẳng đối xứng của tứ diện đều là mặt phẳng đi qua trung điểm 1 cạnh và chứa cạnh đối diện của tứ diện đều có 6 cạnh nên số mặt phẳng đối xứng là 6
Cho tứ diện đều ABCD có cạnh bằng a. Gọi E là điểm đối xứng của A qua D. Mặt phẳng qua CE và vuông góc với mặt phẳng A B D cắt cạnh AB tại điểm F. Thể tích của khối tứ diện AECF bằng
A. 2 a 3 15
B. 2 a 3 30
C. 2 a 3 40
D. 2 a 3 60
Gọi G là trọng tâm tam giác ABD suy ra C G ⊥ A B D
Do đó mặt phẳng cần dựng là (CEG). Gọi F = E G ∩ A B
Cho khối tứ diện đều ABCD cạnh a. Gọi E là điểm đối xứng của A qua D. Mặt phẳng qua CE và vuông góc với mặt phẳng (ABD) cắt cạnh AB tại điểm F. Tính thể tích V của khối tứ diện AECF.
A. V = 2 a 3 30 .
B. V = 2 a 3 60 .
C. V = 2 a 3 40 .
D. V = 2 a 3 15 .
Cho khối tứ diện đều ABCD cạnh a. Gọi E là điểm đối xứng của A qua D. Mặt phẳng qua CE và vuông góc với mặt phẳng (ABD) cắt cạnh AB tại điểm F. Tính thể tích V của khối tứ diện AECF.
A. V = 2 a 3 30
B. V = 2 a 3 60
C. V = 2 a 3 40
D. V = 2 a 3 15
Cho khối tứ diện đều ABCD cạnh a. Gọi E là điểm đối xứng của A qua D. Mặt phẳng qua CE và vuông góc với mặt phẳng (ABD) cắt cạnh AB tại điểm F. Tính thể tích V của khối tứ diện AECF.
A. 2 a 3 30
B. 2 a 3 60
C. 2 a 3 40
D. 2 a 3 15
Đáp án D
Gọi G là trọng tâm tam giác ABD
=> (CEF) là mặt phẳng cần dựng.
Ta tính được
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V . Tính V .
A. 7 2 a 3 216
B. 11 2 a 3 216
C. 13 2 a 3 216
D. 2 a 3 18
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Đáp án A
Nối chia khối tứ diện ABCD thành hai khối đa diện gồm PQD.NMB và khối đa diện chứa đỉnh A có thể tích A.
Dễ thấy P,Q lần lượt là trọng tâm của ∆BCE, ∆ABE
Gọi S là diện tích
Họi h là chiều cao của tứ diện ABCD
Khi đó
Suy ra