Chứng minh rằng 2n + 3; 4n + 8 là hai số nguyên tố cùng nhau
b1.Cho AB = 2CD .Chứng minh rằng ABCD chia hết cho 67
b2.chứng minh N.(n+1).(2n+1) chia hết cho 2 và 3
b3. chứng minh rằng
a.4n - 5 chia hết cho 2n - 1
b.2.(2n - 1) -3 chia hết cho 2n -1
Bài 3:
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
b: =>-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
chứng minh rằng : 2n. (2n+1).(2n+2) ⋮3 với mọi số tự nhiên n
2n, 2n + 1 và 2n + 2 là 3 số tự nhiên liên tiếp. Mà trong 3 số tự nhiên liên tiếp, luôn tồn tại 1 số chia hết cho 3
--> 2n(2n + 1)(2n + 2) chia hết cho 3 với mọi số tự nhiên n.
- Khi \(2n\) chia cho 3 thì sẽ có số dư là 0,1,2:
- Xét \(2n=3k\) =>\(2n\left(2n+1\right)\left(2n+2\right)\) ⋮3 (1)
- Xét \(2n=3k+1\) =>\(2n+2=3k+3\) =>\(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 (2)
- Xét \(2n=3k+2\) =>\(2n+1=3k+3\) =>\(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 (3)
- Từ (1),(2),(3) suy ra \(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 với mọi số tự nhiên n.
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
chứng minh rằng n^4+2n^3+2n^2+2n+1 ko là số chính phương
ta có n^4+2n^3+2n^2+2n+1=(n^2+n+1)^2-n^2=(n^2+1)(n+1)^2=t^2khi và chỉ khi n^2+1 là số chính phương
có n^2+1=a^2khi và chỉ khi n=0
Chứng minh rằng:
2^2n+1 + 3^2n+1 chia hết cho 5
Chứng minh rằng A=2^2n+1 + 3^2n+1 chia hết cho 5
Áp dụng t/c với n lẻ thì \(a^n+b^n\) chia hết cho a+b
Em không biết lớp 8 làm thế nào
Nhưng cách lớp 7 thì có thể làm:
2^2n+1 + 3^2n+1
= (2^2n).2 + (3^2n).3
=4^n.2 + 9^n.3
Nếu n lẻ:
4^n tận cùng 4 => 4^n.2 tận cùng 8
9^n tận cùng 9 => 9^n.3 tận cùng 7
vay 4^n.2+9^n.3= ....8+.....7=.....5 chia hết 5
Nếu n chẵn:
4^n tận cùng 6 => 4^n.2 tận cùng 2
9^n tận cùng 1 => 9^n.3 tận cùng 3
vay 4^n.2+9^n.3=....2+.....3=...5 chia hết cho 5
Chứng minh rằng 2n+1/2n+3 tối giản với mọi n thuộc N
Gọi d là ước chung lớn nhất của 2n+1 và 2n+3
Khi đó \(2n+1⋮d\)và \(2n+3⋮d\)
Do đó \(2n+3-2n-1⋮d\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Mặc khác \(2n+1\)không chia hết cho 2 nên d = 1
Do đó \(ƯCLN\left(2n+1;2n+3\right)=1\)
Khi đó phân số \(\frac{2n+1}{2n+3}\)tối giản
Chứng minh rằng 2n+1 và 2n+3 là số nguyên tố cùng nhau
chứng minh rằng BCNN(2n+3;2n+5) = (2n+3)(2n+5)
vì 2n chẵn
=>2n + 3 và 2n + 5 là 2 số lẻ liên tiếp
=>2n + 3 và 2n + 5 nguyên tố cùng nhau
=>BCNN (2n + 3 ; 2n + 5 ) = (2n + 3)(2n + 5)
chứng minh rằng: 1^3 + 3^3 + 5^3 +...+ (2n+1)^3 = (n + 1)^2 x (2n^2 + 4n + 1)
seo mầy stupid như dậy | |
đồ bú Thảo | |
gửi câu hỏi hơi lâu |