Gọi S là tập hợp các giá trị của tham số m để giá trị lớn nhất của hàm số y = x 2 - m x + 2 m x - 2 trên đoạn [-1;1] bằng 3. Tính tổng tất cả các phần tử của S.
A. - 8 3
B. 5
C. 5 3
D. -1
Gọi S là tập hợp các giá trị của tham số m để giá trị lớn nhất của hàm số y = x 2 − m x + 2 x − 2 trên đoạn [-1;1] bằng 3. Tính tổng tất cả các phần tử của S.
A. − 8 3
B. 5
C. 5 3
D. -1
Gọi A, a lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y = x 3 - 3 x + m trên đoạn [0;2]. Gọi S là tập các giá trị thực của tham số m để Aa = 12. Tổng các phần tử của S bằng
A. 0
B. 2
C. -2
D. 1
Chọn A
Kiến thức bổ sung: Dạng toán tìm GTLN, GTNN của hàm số y = |u(x)| trên đoạn [a;b]
Gọi M, m lần lượt là GTLN, GTNN của hàm số u(x) trên đoạn [a;b]
Đặt:
Ta có:
Suy ra:
TH1: (loại)
(vì ko thỏa mãn giả thiết Aa = 12)
TH2:
Từ giả thiết: Aa = 12
TH3:
Từ giả thiết: Aa = 12
Kết hợp các trường hợp suy ra: S = {-4;4}
Vậy tổng các phần tử của bằng: (-4) + 4 = 0.
Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị lớn nhất của hàm số y = x 2 - 3 x + m trên đoạn [ 0; 2] bằng 3. Số phần tử của S là
A. 1
B. 2
C. 3
D. 5
+ Xét hàm số f(x) = x3-3x+ m là hàm số liên tục trên đoạn [0; 2] .
Ta có đạo hàm f’ (x) = 3x2- 3 và f’ (x) = 0 khi x= 1 ( nhận ) hoặc x= -1( loại)
+ Suy ra GTLN và GTNN của f(x) thuộc { f(0); f(1) ; f(2) }={m;m-2; m+2}.
+ Xét hàm số y = x 3 - 3 x + m trên đoạn [0; 2 ] ta được giá trị lớn nhất của y là
m a x m ; m - 2 ; m + 1 = 3 .
TH1: m= 3 thì max {1;3;5}= 5 ( loại )
TH2:
+ Với m= -1. Ta có max {1; 3}= 3 (nhận).
+Với m= 5. Ta có max { 3;5;7}= 7 (loại).
TH3:
+ Với m= 1. Ta có max {1; 3}= 3 (nhận).
+ Với m= -5. Ta có max {3;5;7}= 7 (loại).
Do đó m= -1 hoặc m= 1
Vậy tập hợp S có phần tử.
Chọn B.
Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số y = x 2 + m x + m x + 1 trên [1;2] bằng 2. Số phần tử của S là
A. 1
B. 4
C. 3
D. 2
Gọi S là tập hợp các giá trị của tham số m sao cho giá trị lớn nhất của hàm số y = | x 3 - 3 x 2 - 9 x + m | trên đoạn [-2;4] bằng 16. Số phần tử của S là
A. 0.
B. 2.
C. 4.
D. 1.
Chọn D.
Cách 1. Xét hàm số y = f(x) x 3 - 3 x 2 - 9 x + m có
Ta có bảng biến thiên sau
Giá trị lớn nhất của hàm số y = | x 3 - 3 x 2 - 9 x + m | trên đoạn bằng 16 khi và chỉ khi
Vậy m = 11 là giá trị duy nhất của thỏa mãn
Cách 2: Xét hàm số y = f(x) = x 3 - 3 x 2 - 9 x + m có
Ta có:
Vậy
Xét phương trình không có giá trị nào của thỏa mãn vì
m = 18 thì
m = -14 thì
Xét phương trình không có giá trị nào của thỏa mãn vì
m = 36 thì
m = 4 thì
Xét phương trình có một giá trị thỏa mãn vì
m = 43 thì
m = 11 thì (thỏa mãn)
Xét phương trình có một giá trị thỏa mãn vì
m = 11 thì (thỏa mãn)
m = -21 thì
Vậy có m = 11 thỏa mãn yêu cầu bài toán.
Gọi S là tập hợp các giá trị của tham số m sao cho giá trị lớn nhất của hàm số y = | x 3 - 3 x 2 - 9 x + m | trên đoạn [-2;4] bằng 16. Số phần tử của S là
A. 0.
B. 2.
C. 4.
D. 1.
Chọn D.
Cách 1. Xét hàm số y = f(x) x 3 - 3 x 2 - 9 x + m có
Ta có bảng biến thiên sau
Giá trị lớn nhất của hàm số y = | x 3 - 3 x 2 - 9 x + m | trên đoạn bằng 16 khi và chỉ khi
Vậy m = 11 là giá trị duy nhất của thỏa mãn
Cách 2: Xét hàm số y = f(x) = x 3 - 3 x 2 - 9 x + m có
Ta có:
Vậy
Xét phương trình không có giá trị nào của thỏa mãn vì
m = 18 thì
m = -14 thì
Xét phương trình không có giá trị nào của thỏa mãn vì
m = 36 thì
m = 4 thì
Xét phương trình có một giá trị thỏa mãn vì
m = 43 thì
m = 11 thì (thỏa mãn)
Xét phương trình có một giá trị thỏa mãn vì
m = 11 thì (thỏa mãn)
m = -21 thì
Vậy có m = 11 thỏa mãn yêu cầu bài toán.
Gọi S là tập hợp các giá trị của tham số m sao cho giá trị lớn nhất của hàm số y = x 3 - 3 x 2 - 9 x + m trên đoạn [-2;4] bằng 16. Số phần tử của S là
A.0
B.2
C.4
D.1
Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số y = x 3 − 3 x + m trên đoạn [0;2] bằng 3. Tập hợp S có bao nhiêu phần tử?
A. 1
B. 2
C. 6
D. 0
Cho hàm số f(x)=(2 x +m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
B. 3
C. 0
D. 2