Cho số phức z thỏa mãn z i + 2 = 1. Biết rằng tập các điểm biễu diễn số phức z là một đường tròn (C). Tính bán kính r của đường tròn (C).
A. r = 1
B. r = 5
C. r = 2
D. r = 3
Cho số phức z thỏa mãn z i + 2 = 1. Biết rằng tập các điểm biễu diễn số phức z là một đường tròn (C). Tính bán kính r của đường tròn (C).
A. r = 1
B. r = 5
C. r = 2
D. r = 3
Cho số phức z thỏa mãn z i + 2 = 1. Biết rằng tập các điểm biễu diễn số phức z là một đường tròn (C) Tính bán kính r của đường tròn (C)
A. r = 1.
B. r = 5 .
C. r = 2.
D. r = 3 .
Đáp án B.
Ta có z i + 2 = 2 ⇒ a 2 + b 2 5 = 1 ⇒ a 2 + b 2 = 5 ⇒ 5 .
Xét các số phức z thỏa mãn z + 2 i z ¯ + 2 là số thuần ảo. Biết rằng tập hợp tất cả các điểm biễu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
A. (1;-1)
B. (1;1)
C. (-1;1)
D. (-1;-1)
suy ra điểm biểu diễn cho số phức z là M(x;y)
Ta có
Theo giả thiết: z + 2 i z ¯ + 2 là số thuần ảo nên
Vậy tập hợp tất cả các điểm biễu diễn của z là một đường tròn có tâm I(-1;-1) Chọn D.
Cho số phức z thỏa mãn z - 2 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = ( 1 - i ) z + i là một đường tròn. Tính bán kính r của đường tròn đó
A. 2 2
B. 4
C. 2
D. 2
Cho các số phức z thỏa mãn z + 1 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = ( 1 + i 8 ) z + i là một đường tròn. Bán kính r của đường tròn đó là
Cho số phức z thỏa mãn |z+i| = 1. Biết rằng tập hợp các điểm biểu diễn các số phức w = z - 2i là một đường tròn. Tâm của đường tròn đó là:
A. I(0;-1)
B. I(0;-3)
C. I(0;3)
D. I(0;1)
Đáp án B.
Ta có
Gọi Suy ra z = x + (2+y).i
Suy ra
Theo giả thiết, ta có
Vậy tập hợp các số phức w = z - 2i là đường tròn tâm I(0;-3).
Cho số phức z thỏa mãn z + i = 1 . Biết rằng tập hợp các điểm biểu diễn các số phức w = z − 2 i là một đường tròn. Tâm của đường tròn đó là:
A. I(0;-1)
B. I(0;-3)
C. I(0;3)
D. I(0;1)
Đáp án B.
Vậy tập hợp các số phức w = z - 2i là đường tròn tâm I(0;-3).
Tập hợp các điểm trong mặt phẳng tọa đọ biễu diễn số phức z thỏa mãn điều kiện: 2 2 - i = z - z ¯ + 2 i là hình gì?
A. Một đường thẳng.
B. Một đường Parabol
C. Một đường Elip
D. Một đường tròn
Đáp án A
Giả sử z = a + b i a , b ∈ ℝ ⇒ z ¯ = a - b i
Ta có z - z ¯ + 2 i = a + b i - ( a - b i ) + 2 i ⇒ z - z ¯ + 2 i = 2 b + 2
Do đó giả thiết viết tại 2 5 = 2 b + 2 suy ra quỹ tích là đường thẳng.
Cho số phức z thỏa mãn z + i = 1 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 + 4 i z + 2 + i là một đường tròn tâm I, điểm I có tọa độ là
A. (6; -2)
B. (6; 2)
C. (2; 1)
D. (-2; -1)