Cho hình chóp S.ABC có SA vuông góc với đáy, SA = a, tam giác ABC vuông cân, Ab = BC = a là trung điểm của SB, H là chân đường cao hạ từ A của tam giác SAC. Tính thể tích hình chóp S.AMH.
A. a 3 9
B. a 3 12
C. a 3 27
D. a 3 36
Cho hình chóp S.ABC có SA vuông góc với đáy, SA = a, tam giác ABC vuông cân, Ab = BC = a là trung điểm của SB, H là chân đường cao hạ từ A của tam giác SAC. Tính thể tích hình chóp S.AMH.
A. a 3 9
B. a 3 12
C. a 3 27
D. a 3 36
Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc . Tính VS ABCD . theo a và . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.
Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.
Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.
Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .
. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:
a.Tính thể tích khối chóp S.ABC
b.Chứng minh SC vuông góc với (AB'C')
c.Tính thể tích khối chóp S.ABC
Cho hình chóp S.ABC có đường cao SA tam giác ABC vuông tại A có AB = 2, AC = 4. Gọi H là trung điểm của BC. Biết diện tích tam giác SAH bằng 2, thể tích của khối chóp S.ABC bằng
A. 16 5 15
B. 16 5 5
C. 4 5 9
D. 4 5 3
Phương pháp:
Thể tích khối chóp có chiều cao h và diện tích đáy S là V = 1 3 hS
Sử dụng công thức tính diện tích tam giác để tính toán.
Cách giải:
Xét tam giác ABC vuông tại A ta có
Mà
Thể tích khối chóp
Chọn A.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy.
a) Chứng minh tam giác SBC vuông
b) Gọi H là chân đường cao vẽ từ B của tam giác ABC.
Chứng minh (SAC) ⊥ (SBH)
c) Cho AB = a, BC = 2a. Tính khoảng cách từ B đến mặt phẳng (SAC)
a) BC ⊥ SA & BC ⊥ AB) ⇒ BC ⊥ (SAB)
⇒ BC ⊥ SB.
⇒ tam giác SBC vuông tại B.
b) BH ⊥ AC & BH ⊥ SA ⇒ BC ⊥ (SAC)
⇒ (SBH) ⊥ (SAC).
c) d[B, (SAC)] = BH. Ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 3, BC = 4, đường thẳng SA vuông góc với mặt phẳng (ABC), SA = 4. Gọi AM, AN lần lượt là chiều cao của tam giác SAB và SAC. Thể tích khối tứ diện AMNC là
A. 128/41
B. 768/41
C. 384/41
D. 256/41
Cho hình chóp S.ABC có đường cao SA = 2a, tam giác ABC vuông tại C, A B = 2 a , C A B ^ = 30 ° . Gọi H là hình chiếu của A trên SC , B' là điểm đối xứng của B qua mặt phẳng (SAC). Thể tích của khối chóp H.AB'B bằng
A. a 3 3 7
B. 6 a 3 3 7
C. 4 a 3 3 7
D. 2 a 3 3 7
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 3, BC = 4, đường thẳng SA vuông góc với mặt phẳng (ABC), SA = 4. Gọi AM, AN lần lượt là chiều cao các tam giác SAB và SAC. Thể tích khối tứ diện AMNC là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 3, BC = 4, đường thẳng SA vuông góc với mặt phẳng (ABC), SA = 4. Gọi AM, AN lần lượt là chiều cao các tam giác SAB và SAC. Thể tích khối tứ diện AMNC là
A. 128 41 .
B. 256 41 .
C. 768 41 .
D. 384 41
Cho hình chóp S.ABC có SA ⊥ (ABC), tam giác ABC vuông cân tại B, AC= 2a và SA=a. Gọi M là trung điểm của SB. Tính thể tích khối chóp S.AMC.
A. a 3 9
B. a 3 3
C. a 3 6
D. a 3 12
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B có AB=BC=a,SB=2a và SA vuông góc với đáy. Tính thể tích khối chóp S.ABC.