Cho hai số thực a và b thỏa mãn l i m x → + ∞ 4 x 2 - 3 x + 1 2 x + 1 - a x - b = 0 . Khi đó a + 2 b bằng
A. -4
B. -5
C. 4
D. -3
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Cho hai số thực a và b thỏa mãn: 1 + i z + 2 − i z ¯ = 13 + 2 i với i là đơn vị ảo
A. a = − 3 , b = 2
B. a = − 3 , b = − 2
C. a = 3 , b = − 2
D. a = 3 , b = 2
Tìm hai số thực a và b thỏa mãn 3a + b - 2ai = (1-i)(1+3i) với i là đơn vị ảo.
A. a=1, b=1
B. a= -1, b=1
C. a= -1, b=7
D. a=7, b= -1
Tìm hai số thực a và b thỏa mãn 3 a + b - 2 a i = ( 1 - i ) ( 1 + 3 i ) với i là đơn vị ảo
Cho số thực a thay đổi và số phức z thỏa mãn z a 2 + 1 = i - a 1 - a a - 2 i . Trên mặt phẳng tọa độ, gọi M là điểm biểu diễn số phức z . Khoảng cách giữa hai điểm M và I (-3; 4) (khi a thay đổi) là:
A. 4
B. 3
C. 5
D. 6
1. Trong một tháng nào đó có 3 ngày thứ bảy rơi vào các ngày chẵn. Hỏi ngày 23 tháng đó là thứ mấy trong tuần ?
2. Cho a, b là hai số nguyên dương, a > b và a,b có nhiều hơn một ước số chung. CMR ước số chung lớn thứ hai của a và b bằng ước số chung lớn thứ hai của a và a - b.
3. Tồn tại hay không các số nguyên x,y,z thỏa mãn I x - y I + I y - z I + I z - x I = 2017. Vì sao ?
4. Xét 3 số thực x,y,z thỏa mãn I x I - 3 = I y I + 4 = 10 - I z I
Tìm GTLN của K = y( x + z )
Ai biết câu nào thì giúp mình câu đấy thôi cũng đc nhé. Thanks ! ^^
Cho a, b, c là ba số thực thỏa mãn điều kiện a 3 > 36 và abc = 1
Xét tam thức bậc hai
Chứng minh rằng f(x) > 0, ∀x
Cho hai số thực a và b thỏa mãn \(lim_{x->+\infty}\left(\dfrac{4x^2-3x+1}{2x+1}-ax-b\right)=0\) khi đó a+2b bằng bao nhiêu ?
\(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{4x^2-3x+1}{2x+1}-ax-b\right)=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{4x^2-3x+1-\left(2x+1\right)\left(ax+b\right)}{2x+1}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(4-2a\right)x^2-\left(a+2b+3\right)x-b+1}{2x+1}\)
Giới hạn đã cho bằng 0 khi và chỉ khi: \(\left\{{}\begin{matrix}4-2a=0\\a+2b+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-\dfrac{5}{2}\end{matrix}\right.\)
Cho hàm số f ( x ) = ln e x + m Có bao nhiêu số thực dương m để f'(a) + f'(b)=1 với mọi số thực a, b thỏa mãn a + b = 1
A. 1
B. 2
C. Vô số
D. 0
Cho hai số thực a,b thỏa mãn a > b và ab = 2.
Tìm GTNN của M = (a^2 + b^2)/(a-b)
giải hộ e cần gấp ạ..