Trong không gian Oxyz, cho véc tơ a → biểu diễn của các véc tơ đơn vị là a → = 2 i → + k → - 3 j → . Tọa độ của véc tơ a → là:
A. (1;2;-3)
B. (2;-3;1)
C. (2;1;-3)
D. (1;-3;2)
Trong không gian Oxyz, cho véc tơ a → biểu diễn của các véc tơ đơn vị là a → = 2 i → + k → − 3 j → . Tọa độ của véc tơ a → là:
A. 1 ; 2 ; − 3
B. 2 ; − 3 ; 1
C. 2 ; 1 ; − 3
D. 1 ; − 3 ; 2
Trong không gian tọa độ Oxyz, cho đường thẳng d: .Véc tơ nào trong các véc tơ sau đây không là véc tơ chỉ phương của đường thẳng d?
A. u 1 → = 2 ; - 2 ; 2
B. u 1 → = - 3 ; 3 ; - 3
C. u 1 → = 4 ; - 4 ; 4
D. u 1 → = 1 ; 1 ; 1
Đáp án D
Phương pháp:
Đường thẳng d: có 1 VTCP là . Mọi vectơ v → = k u → ( k ∈ Z ) cùng phương với vecto u → đều là VTCP của đường thẳng d
Cách giải: Đường thẳng d nhận u 1 → = 1 ; - 1 ; 1 là 1 VTCP. Mọi vecto cùng phương với vecto đều u → là VTCP của đường thẳng d.
Ta thấy chỉ có đáp án D, vecto u 1 → = 1 ; 1 ; 1 không cùng phương với u 1 → = 1 ; - 1 ; 1 nên u 1 → = 1 ; 1 ; 1 không là VTCP của đường thẳng d
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng . Véc-tơ nào trong các véc-tơ sau đây không là véc-tơ chỉ phương của đường thẳng d?
Trong không gian với hệ tọa độ Oxyz, cho véc-tơ =(1;0;-2). Trong các véc-tơ sau đây, véc-tơ nào không cùng phương với véc-tơ ?
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P): x - 2y + 3z + 3 = 0. Trong các véc tơ sau véc tơ nào là véc tơ pháp tuyến của (P)?
A. n → = 1 ; 2 ; - 3
B. n → = - 1 ; 2 ; 3
C. n → = 1 ; 2 ; 3
D. n → = 1 ; - 2 ; 3
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P): x - 2y + 3z +3 = 0. Trong các véc tơ sau véc tơ nào là véc tơ pháp tuyến của (P)?
A. n → = ( 1 ; 2 ; - 3 )
B. n → = ( - 1 ; 2 ; 3 )
C. n → = ( 1 ; 2 ; 3 )
D. n → = ( 1 ; - 2 ; 3 )
Trong không gian tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y - 1 - 1 = z - 1 1 Véc tơ nào trong các véc tơ sau đây không là véc tơ chỉ phương của đường thẳng d?
A. u 1 → =(-2;2;-2)
B. u 1 → =(-3;3;-3)
C. u 1 → =(2;-4;4)
D. u 1 → =(1;1;1)
Đáp án D
Phương pháp:
Đường thẳng
có 1 VTCP là u 1 → =(a;b;c). Mọi vectơ v → =k u → (k ∈ Z)cùng phương với vecto u → đều là VTCP của đường thẳng d.
Cách giải: Đường thẳng d nhận u → =(1;-1;1) là 1 VTCP. Mọi vecto cùng phương với vecto đều là VTCP của đường thẳng d.
Ta thấychỉ có đáp án D, vecto u 1 → =(1;1;1) không cùng phương với u → =(1;-1;1) nên u 1 → =(1;1;1) không là VTCP của đường thẳng d.
Trong không gian với hệ tọa độ Oxyz cho hai véc tơ a → = 3 ; 0 ; 2 , c → = 1 ; − 1 ; 0 . Tìm tọa độ của véc tơ b → thỏa mãn biểu thức 2 b → − a → + 4 c → = 0 →
A. 1 2 ; − 2 ; − 1
B. − 1 2 ; 2 ; 1
C. − 1 2 ; − 2 ; 1
D. − 1 2 ; 2 ; − 1
Đáp án B
Ta có a → − 4 c → = − 1 ; 4 ; 2
⇒ 2 b → = a → − 4 c → ⇒ b → = − 1 2 ; 2 ; 1
#2H3Y1-1~Trong không gian Oxyz, cho véc-tơ sao cho . Tọa độ của véc-tơ là:
A. (-2;1;2)
B. (1;2;-2)
C. (2;1-2)
D. (2;1;2).