Cho số phức z = 2 +i. Tính modun của số phức w = z 2 - 1
A. 2 5
B. 5
C. 5 5
D. 20
Cho số phức z có |z| =2 thì số phức w = z + 3i có modun nhỏ nhất và lớn nhất lần lượt là:
A. 2 và 5
B. 1 và 6
C. 2 và 6
D. 1 và 5
Cho số phức z có |z|=2 thì số phức w=z+3i có modun nhỏ nhất và lớn nhất lần lượt là:
A. 2 và 5
B. 1 và 6
C. 2 và 6
D. 1 và 5
cho 2 số phức z1=2+4i,z2= -1+3i .tính modun của số phức w = \(z_1\overline{z_2}-2\overline{z_1}\)
Lời giải:
\(\overline{z_1}=2-4i; \overline{z_2}=-1-3i\)
\(\Rightarrow w=z_1\overline{z_2}-2\overline{z_1}=(2+4i)(-1-3i)-2(2-4i)=6-2i\)
\(\Rightarrow |w|=\sqrt{6^2+(-2)^2}=2\sqrt{10}\)
\(\overline{z_1}=2-4i\) ; \(\overline{z_2}=-1-3i\)
\(\Rightarrow w=\left(2+4i\right)\left(-1-3i\right)-2\left(2-4i\right)=6-2i\)
\(\Rightarrow\left|w\right|=\sqrt{6^2+\left(-2\right)^2}=2\sqrt{10}\)
Cho số phức z thỏa mãn 2 + 4 i z + 2 = 4 + 3 i z + i Modun của số phức z là
A . z = 5 2
B . z = 2
C . z = 1
D . z = 3 2
bài 1 a/tìm số phức z biết \(\left|z\right|+z=3+4i\)
b/ cho các số phức z1 z2 thỏa mãn z1+3z1z2=(-1+i)z2 và 2z1-z2=3+2i.tìm modun của số phức w=\(\frac{z1}{z2}\)+z1+z2
bài 2 a/giải pt trên tập số phức 2\(z^4\)-7\(z^3\)+9\(z^2\)+2=0
b/cho số phức z=1+i\(\sqrt{3}\).Hãy tìm dạng lượng giác của các số phức z , \(\overline{z}\) , -z,\(\frac{1}{z}\)
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Bài tập số 4: Tìm số phức liên hợp \(\overline{Z}\) và tính modun (|z|) của số phức sau.
a, z = 2 + 3i b, \(z=\left(2+3i\right)^3\)
c, \(z=\dfrac{2+3i}{1-2i}\) d, \(z=\sqrt{2}-\dfrac{4}{3}i\)
Cho hai số phức z1=1+i , z2=3-7i. Tình modun của số phức z1-z2
\(z_1-z_2=1+i-\left(3-7i\right)=1+i-3+7i=-2+8i\)
\(\Rightarrow\left|z_1+z_2\right|=\sqrt{\left(-2\right)^2+8^2}=2\sqrt{17}\)
Cho số phức z thỏa mãn ( 1+ i) z + 2z = 2. Tính mô-đun của số phức w = z + 2/5 - 4/5i.
A. 1.
B. 2.
C. 2
D. 3
Chọn C.
Đặt z = a+ bi.
Theo đề ra ta có: ( 3 + i) z = 2
Hay ( 3 + i)( a + bi) = 2
Suy ra: 3a - b + ( 3b + a) i = 2
nên z = 3/5 - 1/5i.
Khi đó w = 3/5 - 1/5i + 2/5 - 4/5 i = 1 - i.
Vậy