Cho dãy số ( u n ) như sau: u n : n 1 + n 2 + n 4 , ∀ n = 1 , 2 . . . Tính giới hạn lim n → + ∞ ( u 1 + u 2 + . . . + u n )
A. 1 4
B.1
C. 1 2
D. 1 3
Cho dãy số u ( n ) xác định bởi u ( 1 ) = 1 ; u ( m + n ) = u ( m ) + u ( n ) + m n , ∀ m , n ∈ ℕ * . Tính u ( 2017 )
A. 2035153
B. 2035154
C. 2035155
D. 2035156
Chọn A
Phương pháp: Tìm công thức số hạng tổng quát
Cách giải: Ta có:
u ( 1 ) = 1
u ( 2 ) = u ( 1 ) + u ( 1 ) = 2 u ( 1 ) + 1
u ( 3 ) = u ( 2 ) + u ( 1 ) = 3 u ( 1 ) + 1 + 2
u ( 4 ) = u ( 3 ) + u ( 1 ) = 4 u ( 1 ) + 1 + 2 + 3
. . .
u ( 2017 ) = u ( 2016 ) + u ( 1 ) = 2017 u ( 1 ) + 1 + 2 + 3 . . . + 2016
⇒ u ( 2017 ) = 1 + 2 + 3 . . . + 2016 + 2017 = 2035153
Cho dãy Un được xác định như sau: U1=1; U2=2;U3=3 và Un+3= 2Un+2-3Un+1+2Un
a) Viết quy trình bấm phím liên tục để tính Un\(\left(n\ge4\right)\)
b) Tính U19;U20
cho dãy số {un } đươc tạo thành theo quy tắc sau: mỗi số sau bằng tích của 2 số trước cộng với 1, bắt đầu từ u0 = u1 = 1. lập 1 quy trình tính un
Cho dãy số U 1 , U2 . . . Un
Dãy số trên có là dãy số cách đều không nếu Un = n2 + n
( Với mọi n lớn hơn hoặc bằng 1 )
Đố thánh nào làm được
Dãy số Un được gọi là dãy số cách đều khi : Un+1 - Un = d (Hằng số - Không phụ thuộc vào n) Nếu d.> 0 thì dãy số gọi là dãy số tăng, nếu d< 0 thì dãy số là dãy giảm.
Dãy số mà Un = n2 + n với \(\forall n\in N,n\ge1\).Ta xét hiệu Un+1 - Un = (n +1)2 + (n + 1) - (n2 + n) = 2n + 2 Không phải là hằng số (Vì hiệu này còn chứa n) Vậy dãy số đã cho không phải là dãy số cách đều.
cho dãy số U0 =2, U1 =10 ;Un+1 =10Un - Un-1 . Tính U9
1. Tìm 20 số hạng đầu của dãy số (un) cho bởi:
\(\hept{\begin{cases}u_1=1\\u_{n+1}=\frac{u_{n+2}}{u_{n+1}}\end{cases}},n\inℕ^∗\)
2. Cho dãy số: u1=2; u2=3; u3=18; u4= 67; u5=184
Tính u10; u11; u12; u13; u14; u15
cho một dãy chữ viết như sau : (H,A,I,B,A) ; (T,R,U,N,G) ; (H,A,I,B,A) ; (T,R,U,N,G) ; .... và cứ như thế. Hỏi chữ thứ bốn mươi hai tỷ sáu trăm hai mươi ba triệu một trăm nghìn chín trăn lẻ ba là chữ gì ? (số 42.623.100.903)
cho dãy số \(\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^n\left(\frac{1-\sqrt{5}}{2}\right)^n\right]\) với n = 1;2;3....
tìm 10 số hạng đầu tiên của dãy
lập công thức truy hồi Un+2 theo Un+1 và Un
lập quy trình ấn phím Un+2 và U25 đến U30