Tìm số tự nhiên n để M =2014 + n2 là số chính phương
AI GIẢI RÕ RA ĐC MÌNH CHO LIKE
tìm số tự nhiên có 2 chữ số,biết rằng nếu nhân nó với 135 thì ta được số chính phương
AI GIẢI RÕ RA ĐƯỢC MÌNH CHO LIkE
Gọi số cần tìm là a, số về sau là b2.Ta có:
35a=b2
Mà 35=5.7 nên a không thể bằng 5 hoặc 7
=>a=35
Vậy số cần tìm là 35
Gọi số có 2 chữ số đó là ab (a và b là các chữ số) và số chính phương đó là x
Theo bài ra ta có: ab * 35 = x
=> x = 352
=> ab * 35 = 352
=> ab = 35
Gọi số cần tìm là a, số về sau là b2.Ta có:
35a=b2
Mà 35=5.7 nên a không thể bằng 5 hoặc 7
=>a=35
Vậy số cần tìm là 35
các số sau có phải là số chính phương không ?giải thích?
C=100!+7 ! là giai thừa
ai giải rõ ra đc mình cho like
Không vì 100! có tận cùng là 0 nên 100! + 7 có tận cùng là 7.
Mà không có số chính phương nào tận cùng là 7 (ĐPCM).
tìm số tự nhiên n để M=n2+2014 là 1 số chính phương
giúp mình nhanh nha các bạn
à giải bằng đồng dư đó
Tìm số tự nhiên n để M = 2014 + n2 là số chính phương.
Gọi số chình phương đó là: b2
ta có: 2014+ n2=b2
2014= b2-n2
2014=(b+n).(b-n)
nếu n là số lẻ thì n2 là số lẻ nên b2 là số lẻ
nếu n là số chẵn thì n2 là số chẵn nên b2 là số chẵn
vậy (b+n) và (b-n) khi chia cho 2 thì đồng dư (1)
ta có: 2014=1.2014=2.1007=19.106 ( mẫu thuẫn với (1) )
nên không có số tự nhiên n để 2014 + n2 là số chính phương.
Có nhưng mk sẽ ns cho bn sau bây giờ mk bận rùi
Tìm số tự nhiên n để n2–3n là số chính phương
Đặt \(n^2-3n=m^2\) với \(m\in N\)
\(\Rightarrow4n^2-12n=4m^2\)
\(\Rightarrow4n^2-12n+9=4m^2+9\)
\(\Rightarrow\left(2n-3\right)^2-\left(2m\right)^2=9\)
\(\Rightarrow\left(2n-3-2m\right)\left(2n-3+2m\right)=9\)
2n-3-2m | -9 | -3 | -1 | 1 | 3 | 9 |
2n-3+2m | -1 | -3 | -9 | 9 | 3 | 1 |
n | -1 | 0 | -1 | 4 | 3 | 4 |
m | 2 | 0 | -2 | 2 | 0 | -2 |
Vậy \(n=\left\{0;3;4\right\}\) là các giá trị thỏa mãn
các số sau có là số chính phương không ? giải thích?
B=1010 +8
E = 10100 +1050+1
AI GIẢI RÕ RA ĐC MÌNH CHO LIKE
B ko là số chính phương vì B có tận là 8.
E ko là số chính phương vì E chia hết cho 3 mà không chia hết cho 9
B=100...0(có 10 chữ số 0)+8=100...08(có 9 chữ số 0) mà SCP ko có tận cùng là 8 => B ko là SCP.
E có tổng các chữ số là 3 => E chia hết cho 3 Mà SCP chia hết cho 3 thì nó phải chia hết 9 Mà E ko chia hết cho 9 => E ko là SCP.
Số tự nhiên n sao cho n2 + 404 là số chính phương
Các bạn giúp mình giải cụ thể nhé!
CMR nếu n là số tự nhiên sao cho n+1 và n2+1 đều là các số chính phương thì n là bội của số 24
Giải cụ thể, chính xác cho mình nhé! ^^
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.
Cho M = 2014 - a
Tìm số tự nhiên a nhỏ nhất để M là số chính phương
\(\sqrt{2014}=44.9\)
mà 2014 > M = m^2 và m <44.9, m phải là số tự nhiên và lớn nhất (do a có gt nhỏ nhất) => m=44 => M = 1936.
=> a = 78