Gọi số phức z = a + b i a , b ∈ ℝ thỏa mãn z − 1 = 1 v à 1 + i z ¯ − 1 có phần thực bằng 1 đồng thời z không là số thực. Khi đó a . b bằng
A. a . b = 1
B. a . b = 2
C. a . b = − 2
D. a . b = − 1
Cho hai số phức z 1 = 7 + 9 i và z 2 = 8 i . Gọi z = a + b i a , b ∈ ℝ là số phức thỏa mãn z − 1 − i = 5 . Tìm a+b, biết biểu thức P = z − z 1 + 2 z − z 2 đạt giá trị nhỏ nhất.
A. ‒3
B. ‒7
C. 3
D. 7
Cho hai số phức z 1 = 7 + 9 i và z 2 = 8 i . Gọi z = a + b i a , b ∈ ℝ là số phức thỏa mãn z − 1 − i = 5 . Tìm a + b , biết biểu thức P = z − z 1 + 2 z − z 2 đạt giá trị nhỏ nhất
A. ‒3
B. ‒7
C. 3
D. 7
Đáp án D.
Gọi M a ; b là điểm biểu diễn số phức z = a + b i . Đặt I = 1 ; 1 , A 7 ; 9 và B 0 ; 8
Ta xét bài toán: Tìm điểm M thuộc đường tròn C có tâm I, bán kính R = 5 sao cho biểu thức P = M A + 2 M B đạt giá trị nhỏ nhất.
Trước tiên, ta tìm điểm K x ; y sao cho M A = 2 M K ∀ M ∈ C .
Ta có
M A = 2 M K ⇔ M A 2 = 4 M K 2 ⇔ M I → + I A → 2 = 4 M I → + I K → 2
⇔ M I 2 + I A 2 + 2 M I → . I A → = 4 M I 2 + I K 2 + 2 M I → . I K →
⇔ 2 M I → I A → − 4 I K → = 3 R 2 + 4 I K 2 − I A 2 *
(*) luôn đúng ∀ M ∈ C ⇔ I A → − 4 I K → = 0 → 3 R 2 + 4 I K 2 − I A 2 = 0 .
I A → − 4 I K → = 0 → ⇔ 4 x − 1 = 6 4 y − 1 = 8 ⇔ x = 5 2 y = 3
Thử trực tiếp ta thấy K 5 2 ; 3 thỏa mãn 3 R 2 + 4 I K 2 − I A 2 = 0 .
Ta cos M A + 2 M B = 2 M K + 2 M B = 2 M K + M B ≥ 2 K B .
Vì B I 2 = 1 2 + 7 2 = 50 > R 2 = 25 nên B nằm ngoài (C).
Vì K I 2 = 3 2 2 + 2 2 < R 2 = 25 nên K nằm trong (C) .
Dấu bằng trong bất đẳng thức trên xảy ra khi và chỉ khi M thuộc đoạn thẳng BK . Do đó M A + 2 M B nhỏ nhất khi và chỉ khi M là giao điểm của (C) và đường thẳng BK.
Phương trình đường thẳng B K : 2 x + y − 8 = 0 .
Phương trình đường tròn C : x − 1 2 + y − 1 2 = 25 .
Tọa độ điểm M là nghiệm của hệ
2 x + y = 8 x − 1 2 + y − 1 2 = 25 ⇔ x = 1 y = 6
hoặc x = 5 y = − 2 .
Thử lại thấy M 1 ; 6 thuộc đoạn BK.
Vậy a = 1, b = 6 ⇒ a + b = 7 .
Gọi số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn |z-1| = 1 và (1+i)( z ¯ -1) có phần thực bằng 1 đồng thời z không là số thực. Khi đó a, b bằng
A. a.b = 1
B. a.b = 2
C. a.b = -2
D. a.b = -1
Đáp án A
Ta có
Số phức có phần số thực bằng
a + b - 1 = 1(2)
Từ (1), (2) suy ra:
Trong mặt phẳng phức, gọi M là điểm biểu diễn số phức ( z - z ¯ ) 2 với z = a+bi(a,b ∈ ℝ , b ≠ 0). Chọn kết luận đúng.
A. M thuộc tia Ox
B. M thuộc tia Oy
C. M thuộc tia đối của tia Ox
D. M thuộc tia đối của tia Oy
Đáp án C
Gọi
Suy ra M thuộc tia đối của tia Ox.
Trong mặt phẳng phức, gọi M là điểm biểu diễn số phức z − z ¯ 2 với z = a + b i a , b ∈ ℝ , b ≠ 0 . Chọn kết luận đúng
A. M thuộc tia Ox
B. M thuộc tia Oy
C. M thuộc tia đối của tia Ox
D. M thuộc tia đối của tia
Đáp án C
Gọi w = z − z ¯ 2 = a + b i − a + b i 2 = 0 = − 4 b 2
Suy ra M thuộc tia đối của tia Ox
Trong mặt phẳng phức, gọi M là điểm biểu diễn số phức z - z ¯ 2 với z = a + bi(a,b ∈ ℝ , b ≠ 0 ). Chọn kết luận đúng.
A. M thuộc tia Ox
B. M thuộc tia Oy
C. M thuộc tia đối của tia Ox
D. M thuộc tia đối của tia Oy
Đáp án C
Gọi
Suy ra M thuộc tia đối của tia Ox.
Trong mặt phẳng phức, gọi M là điểm biểu diễn cho số phức ( z - z ¯ ) 2 với z = a + b i ( a , b ∈ ℝ , b ≠ 0 )
Chọn kết luận đúng
A. M thuộc tia Ox.
B. M thuộc tia Oy
C. M thuộc tia đối của tia Ox.
D. M thuộc tia đối của tia Oy.
Đáp án C
Phương pháp.
Tính trực tiếp
Lời giải chi tiết.
Ta có
Do
Do đó M có phần thực âm, phần ảo bằng 0, nên thuộc tia đối của tia Ox.
Trong mặt phẳng phức, gọi M là điểm biểu diễn cho số phức ( z - z ¯ ) 2 v ớ i z = a + b i ( a , b ∈ ℝ , b ≠ 0 ) . Chọng kết luận đúng.
Gọi số phức z = a + b i ( a , b ∈ ℝ ) thỏa mãn z - 1 = 1 và ( 1 + i ) ( z ¯ - 1 ) có phần thực bằng 1 đồng thời z không là số thực. Khi đó a.b bằng
A. ab=-2
B. ab=2
C. ab=1
D. ab=-1
Đáp án C
Phương pháp
Gọi số phức đã cho có dạng . Sử dụng giả thiết để đưa ra một hệ cho a, b giải trực tiếp hệ này để tìm a, b
Lời giải chi tiết.
Ta có:
Do z không là số thực nên ta phải có b ≠ 0 (2)
Ta lại có
Từ (1), (2), (3) ta có hệ
Gọi số phức z=a+bi (a,b ∈ ℝ ) thỏa mãn z - 1 = 1 v à ( 1 + i ) ( z ¯ - 1 ) có phần thực bằng 1 đồng thời z không là số thực. Khi đó a.b bằng: