Cho hình trụ nội tiếp mặt cầu thảo mãn chiều cao của trụ băng bán kính mặt cầu. gọi V t , V c lần lượt là thể tích của hình trụ và hình cầu. Khi đó tỉ số thể tích V t V c bằng
A. 1 4
B. 4 9
C. 3 4
D. 9 16
Cho hình trụ nội tiếp mặt cầu thảo mãn chiều cao của trụ băng bán kính mặt cầu. gọi Vt, Vc lần lượt là thể tích của hình trụ và hình cầu. Khi đó tỉ số thể tích Vt/Vc bằng
A. 1/4
B. 4/9
C. 3/4
D. 9/16
Cho hình trụ nội tiếp mặt cầu thỏa mãn chiều cao của trụ
bằng bán kính mặt cầu. Gọi Vt , Vc lần lượt là thể tích của
hình trụ và hình cầu. Khi đó tỉ số thể tích V t V c bằng
Khi cắt mặt cầu S(O;R) bởi một mặt kính, ta được hai nửa mặt cầu và hình tròn lớn của mặt kính đó gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S(O;R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R=1,tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S(O;R) để khối trụ có thể tích lớn nhất.
Khi cắt mặt cầu S(O;R) bởi một mặt kính, ta được hai nửa mặt cầu và hình tròn lớn của mặt kính đó gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S(O;R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R=1,tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S(O;R) để khối trụ có thể tích lớn nhất.
Khi cắt mặt cầu S (O, R) bởi một mặt kính đi qua tâm O, ta được hai nửa mặt cầu giống nhau. Giao tuyến của mặt kính đó với mặt cầu gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S (O, R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R = 1, tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S (O, R) để khối trụ có thể tích lớn nhất.
Khi cắt mặt cầu S (O, R) bởi một mặt kính đi qua tâm O, ta được hai nửa mặt cầu giống nhau. Giao tuyến của mặt kính đó với mặt cầu gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S (O, R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R = 1, tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S (O, R) để khối trụ có thể tích lớn nhất.
A. r = 3 2 ; h = 6 2
B. r = 6 2 ; h = 3 2
C. r = 6 3 ; h = 3 3
D. r = 3 3 ; h = 6 3
Chọn C.
Phương pháp: Dựa vào dữ kiện bài toán lập hàm số và tìm giá trị lớn nhất, nhỏ nhất.
Khi cắt mặt cầu S (O; R) bởi một mặt kính đi qua tâm O, ta được hai nửa mặt cầu giống nhau. Giao tuyến của mặt kính đó với mặt cầu gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S (O; R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R = 1, tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S(O; R) để khối trụ có thể tích lớn nhất.
Chọn đáp án C
Hình trụ nội tiếp nửa mặt cầu, nên theo giả thiết đường tròn đáy trên có tâm O’ là hình chiếu của O xuống mặt đáy (O’). Suy ra hình trụ và nửa mặt cầu cùng chung trục đối xứng và tâm của đáy dưới hình trụ trùng với tâm O của nửa mặt cầu.
Thể tích khối trụ là
Cho mặt cầu (S) có bán kính R. Một hình trụ có chiều cao h và bán kính đáy r thay đổi nội tiếp mặt cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất.
A. h = R 2
B. h = R
C. h = R 2
D. h = R 2 2
Cho mặt cầu (S) có bán kính R. Một hình trụ có chiều cao h và bán kính đáy r thay đổi nội tiếp mặt cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất.
A. h = R 2 .
B. h = R
C. h = R 2 .
D. h = R 2 2 .