Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2019 lúc 13:43

Chọn đáp án D

Gọi H là trung điểm của AB. Từ giả thiết ta có S H ⊥ A B C D  

Suy ra

⇒ S H C vuông cân tại H.

Do ∆ B H C  vuông tại H nên

 

⇒ S H = H C = a 5 2  

Thể tích khối chóp V S . A B C D = 1 3 S H . S A B C D = a 3 5 6 đ v t t  là

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2018 lúc 5:18

Chọn D

Gọi H là trung điểm của AB.

Do đó: 

Xét tam giác vuông BHC:

Xét tam giác vuông SHC:

Suy ra: 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 10 2018 lúc 3:23

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 5 2017 lúc 10:07

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2019 lúc 11:22

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

Hà Thị Ngọc Dung
Xem chi tiết
Lê Song Phương
16 tháng 6 2023 lúc 10:14

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

Lê Song Phương
16 tháng 6 2023 lúc 10:15

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 7 2018 lúc 13:42

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 2 2017 lúc 4:03

Đáp án là D


Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 8 2019 lúc 6:47

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 11 2017 lúc 10:29

Đáp án đúng : B