Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tuấn lê
Xem chi tiết
_Guiltykamikk_
14 tháng 5 2018 lúc 10:39

Trả lời

a^2 + b^2 - 2ab

= ( a^2 - 2ab + b^2 )

= ( a - b )^2 ≥ 0 ( luôn đúng )

Vậy...

Mafia
14 tháng 5 2018 lúc 10:50

\(a^2+b^2-2ab=\left(a-b\right)^2\ge\forall a,b\)

๖Fly༉Donutღღ
14 tháng 5 2018 lúc 19:55

Hằng đẳng thức số 2 \(a^2-2ab+b^2=\left(a-b\right)^2\)

 \(\Rightarrow\left(a-b\right)^2\ge0\)

Vậy \(a^2+b^2-2ab\ge0\left(đpcm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 6 2018 lúc 17:04

Ta có: a - b 2 ≥ 0 a 2 + b 2 - 2 a b ≥ 0

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
4 tháng 7 2017 lúc 15:35

Bất phương trình bậc nhất một ẩn

Lê Quốc Lâm
Xem chi tiết
Akai Haruma
30 tháng 6 lúc 18:35

Lời giải:

Gọi $d=ƯCLN(12n+1, 30n+2)$
$\Rightarrow 12n+1\vdots d; 30n+2\vdots d$

$\Rightarrow 5(12n+1)-2(30n+2)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

$\Rightarrow ƯCLN(12n+1, 30n+2)=1$

$\Rightarrow 12n+1, 30n+2$ là hai số nguyên tố cùng nhau.

Nguyễn Nhật Minh
Xem chi tiết
Đặng Viết Thái
19 tháng 5 2019 lúc 16:30

\(\frac{a^2+b^2}{2}\ge ab\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

Luôn đúng với mọi a và b

FAH_buồn
19 tháng 5 2019 lúc 16:41

Ta có:

     \(\left(a-b\right)^2\ge0\)

       <=>\(\left(a-b\right)\cdot\left(a-b\right)\ge0\)

       <=>\(\left(a^2-2ab+b^2\right)\ge0\)

       <=>\(\left(a^2+b^2\right)\ge2ab\)

       <=>\(\frac{a^2+b^2}{2}\ge ab\)(đpcm)

Vậy với 2 số a,b bất kì ta có \(\frac{a^2+b^2}{2}\ge ab\)

Trần Thanh Phương
19 tháng 5 2019 lúc 21:39

Áp dụng bđt AM-GM 

\(\frac{a^2+b^2}{2}\ge\frac{2\sqrt{a^2b^2}}{2}=\frac{2ab}{2}=ab\)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

iu em mãi anh nhé eya
Xem chi tiết
Đàm Thị Minh Hương
19 tháng 8 2015 lúc 20:50

Gọi d là ƯC của a và ab+4

=> a chia hết cho d, ab+4 chia hết cho d => 4 chia hết cho d => d = { 1, 2, 4}

nếu d=2 thì a chia hết cho 2 , ab+4 chia hết cho 2 ( vô lí vì a là số lẻ)

Tương tự d cũng ko thể bằng 4

Vậy d=1 => a và ab+4 là các số nguyên tố cùng nhau (ĐPCM)

Mai Tuấn Hưng
Xem chi tiết
Nguyễn Đăng Nhân
11 tháng 2 2022 lúc 9:56

Ta thấy: \(\frac{a^2}{b}-2a+b=\frac{\left(a-b\right)^2}{b}\)

\(\sqrt{a^2-ab+b^2}-\frac{a+b}{2}=\frac{a^2-ab+b^2-\frac{\left(a+b\right)^2}{b}}{\sqrt{a^2-ab+b^2}+\frac{a+b}{2}}=\frac{3\left(a-b\right)^2}{4\sqrt{a^2-ab+b^2}+2a+2b}\)

Bất đẳng thức tương đương với:

\(\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)

\(\frac{3\left(a-b\right)^2}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}+\frac{3\left(b-c\right)^2}{4\sqrt{b^2+c^2-bc}+2\left(b+c\right)}+\frac{3\left(c-a\right)^2}{b\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\)

\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\right]+\left(b-c\right)^2\left[\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\right]\)

\(+\left(c-a\right)^2\left[\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\right]\ge0\)

Ta đặt:

\(A=\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\)

\(B=\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\)

\(C=\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\)

Chứng mình sẽ hoàn tất nếu ta chứng minh được A,B,C\(\ge0\), vậy:

\(A=\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}=\frac{4\sqrt{a^2+b^2-2ab}+2a+b}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\ge0\)

\(B=\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}=\frac{4\sqrt{b^2+c^2-2bc}+2b+c}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\ge0\)

\(C=\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}=\frac{4\sqrt{c^2+a^2-ca}+2c+a}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\ge0\)

Vậy biểu thức đã được chứng mình.

Khách vãng lai đã xóa
Hồng Ngọc
Xem chi tiết
Thuy An L5
11 tháng 5 lúc 16:09

Ta cần chứng minh rằng: p = (a − b) (a − c)(a − d) (b − c) (b − d) (c − d) chia hết cho 12.

Nhận xét rằng khi chia một số cho 3 thì số dư là một trong ba số 0, 1, 2. Xét tính chia hết của p với 3 và 4, riêng rẽ. Theo nguyên lý Dirichlet, tồn tại ít nhất hai số nguyên trong bốn số a, b, c, d cho cùng số dư khi chia cho 3.

Hiệu của những hai số này chia hết cho 3. Do đó, p chia hết cho 3. Nếu tồn tại hai trong bốn số nguyên a,b,c,d cho cùng số dư khi chia cho 4, thì p chia hết cho 4, theo cách lập luận như trên.

Nếu không, các số dư của a, b, c, d khi chia cho 4 sẽ khác nhau. Nhưng khi đó, hai trong bốn số cùng tính chẵn lẻ, cặp còn lại cũng cùng tính chẵn lẻ, thì hiệu của chúng đều chẵn. Tích của hai số chẵn chia hết cho 4. Do đó, p chia hết cho 4. Vậy, p chia hết cho 12.

 

Phía sau một cô gái
Xem chi tiết