Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Anh
Xem chi tiết
Nguyễn Hà Minh Thanh
Xem chi tiết
Nguyễn Thị Hà Uyên
11 tháng 4 2016 lúc 20:26

\(I=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{\cos2x+3\cos x+2}dx=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{2\cos^2x+3\cos x+1}dx\)

Đặt \(\cos x=t\Rightarrow dt=-\sin dx\)

Với \(x=0\Rightarrow t=1\)

Với \(x=\frac{\pi}{2}\Rightarrow t=0\)

\(I=\int\limits^1_0\frac{dt}{2t^2+3t+1}=\int\limits^1_0\frac{dt}{\left(2t+1\right)\left(t+1\right)}=2\int\limits^1_0\left(\frac{1}{2t+1}+\frac{1}{2t+1}\right)dt\)

  \(=\left(\ln\frac{2t+1}{2t+1}\right)|^1_0=\ln\frac{3}{2}\)

Trần Thị Hằng
Xem chi tiết
Trần Thị Hằng
29 tháng 11 2019 lúc 19:03
https://i.imgur.com/Pe6vPSJ.jpg
Khách vãng lai đã xóa
Hoàng Nhung
Xem chi tiết
Akai Haruma
6 tháng 3 2017 lúc 21:56

Câu 1)

Ta có \(I=\int ^{1}_{0}\frac{dx}{\sqrt{3+2x-x^2}}=\int ^{1}_{0}\frac{dx}{4-(x-1)^2}\).

Đặt \(x-1=2\cos t\Rightarrow \sqrt{4-(x-1)^2}=\sqrt{4-4\cos^2t}=2|\sin t|\)

Khi đó:

\(I=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{d(2\cos t+1)}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{2\sin tdt}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}dt=\left.\begin{matrix} \frac{2\pi}{3}\\ \frac{\pi}{2}\end{matrix}\right|t=\frac{\pi}{6}\)

Câu 3)

\(K=\int ^{3}_{2}\ln (x^3-3x+2)dx=\int ^{3}_{2}\ln [(x+2)(x-1)^2]dx\)

\(=\int ^{3}_{2}\ln (x+2)d(x+2)+2\int ^{3}_{2}\ln (x-1)d(x-1)\)

Xét \(\int \ln tdt\): Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln t dt=t\ln t-t\)

\(\Rightarrow K=\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x+2)[\ln (x+2)-1]+2\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x-1)[\ln (x-1)-1]\)

\(=5\ln 5-4\ln 4-1+4\ln 2-2=5\ln 5-4\ln 2-3\)

Akai Haruma
6 tháng 3 2017 lúc 22:05

Bài 2)

\(J=\int ^{1}_{0}x\ln (2x+1)dx\). Đặt \(\left\{\begin{matrix} u=\ln (2x+1)\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2dx}{2x+1}\\ v=\frac{x^2}{2}\end{matrix}\right.\)

Khi đó:

\(J=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2\ln (2x+1)}{2}-\int ^{1}_{0}\frac{x^2}{2x+1}dx\)\(=\frac{\ln 3}{2}-\frac{1}{4}\int ^{1}_{0}(2x-1+\frac{1}{2x+1})dx\)

\(=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2-x}{4}-\frac{1}{8}\int ^{1}_{0}\frac{d(2x+1)}{2x+1}=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\ln (2x+1)}{8}\)

\(=\frac{\ln 3}{2}-\frac{\ln 3}{8}=\frac{3\ln 3}{8}\)

Akai Haruma
6 tháng 3 2017 lúc 22:36

Câu 5)

\(J=\underbrace{\int ^{3}_{1}\frac{3dx}{(x+1)^2}}_{A}+\underbrace{\int ^{3}_{1}\frac{\ln xdx}{(x+1)^2}}_{B}\)

Ta có: \(A=\int ^{3}_{1}\frac{3d(x+1)}{(x+1)^2}=\left.\begin{matrix} 3\\ 1\end{matrix}\right|\frac{-3}{x+1}=\frac{3}{4}\)

\(B=\int ^{3}_{1}\frac{\ln xdx}{(x+1)^2}=\left.\begin{matrix} 3\\ 1\end{matrix}\right|\frac{-\ln x}{x+1}+\int ^{3}_{1}\frac{dx}{x(x+1)}=\frac{-\ln 3}{4}+\left.\begin{matrix} 3\\ 1\end{matrix}\right|(\ln |x|-\ln|x+1|)\)

\(B=\frac{-\ln 3}{4}+(\ln 3-\ln 4)+\ln 2=\frac{3}{4}\ln 3-\ln 2\)

Nguyễn Đức
Xem chi tiết
Nguyễn Như Ý
21 tháng 5 2016 lúc 15:42

chưa học nhưng cx sắp học r,đợi tui đi học về xog tui giải cho  :v

Trần Hoàng Sơn
21 tháng 5 2016 lúc 17:59

Tính nguyên hàm - tích phân bằng phương pháp đổi biến số

Thư Hoàngg
Xem chi tiết
Hương Trà
5 tháng 2 2016 lúc 0:08

Hỏi đáp Toánngaingung

Thư Hoàngg
5 tháng 2 2016 lúc 0:11

Cám ơn nhiều :)

nguyễn thị oanh
5 tháng 2 2016 lúc 8:26

55555555555555555555555

Thái Nguyên
Xem chi tiết
Akai Haruma
14 tháng 1 2017 lúc 11:50

Lời giải:

Đặt \(x=2\sin t( \frac{-\pi}{2}\leq t\leq \frac{\pi}{2})\)

Khi đó \(A=\int^{\frac{3}{2}}_{0}\frac{dx}{\sqrt{(4-x^2)^9}}=\int ^{\sin ^-1\left(\frac{3}{4}\right)}_{0}\frac{d(2\sin t)}{\sqrt{(4-4\sin^2 x)^9}}=\frac{1}{2^8}\int ^{\sin ^-1\left(\frac{3}{4}\right)}_{0}\frac{dt}{\cos^8 x}\)

Xét \(\int ^{\sin ^-1\left(\frac{3}{4}\right)}_{0}\frac{dt}{\cos^8 x}=\int ^{\sin ^-1\left(\frac{3}{4}\right)}_{0}\frac{d(\tan x)}{\cos ^6x}=\int ^{\sin ^-1\left(\frac{3}{4}\right)}_{0}\frac{(\sin^2x+\cos^2x)^3d(\tan x)}{\cos^6 x}\)

\(=\int ^{\sin ^-1\left(\frac{3}{4}\right)}_{0}(\tan^2 x+1)^3d(\tan x)=\int ^{\sin ^-1\left(\frac{3}{4}\right)}_{0}(\tan^6x+1+3\tan ^4x+3\tan ^2x)d(\tan x)\)

\(=\left.\begin{matrix} \sin^{-1}\left(\frac{3}{4}\right)\\ 0\end{matrix}\right|\left ( \frac{\tan ^7x}{7}+\tan x+\frac{3\tan^5x}{5}+\tan^3x \right )\)

\(\Rightarrow A=\left.\begin{matrix} \sin^{-1}\left(\frac{3}{4}\right)\\ 0\end{matrix}\right|\left ( \frac{\tan ^7x}{7}+\tan x+\frac{3\tan^5x}{5}+\tan^3x \right ).\frac{1}{2^8}\approx 0,015862\)

P/s: Kiểm tra kết quả tại http://www.wolframalpha.com/input/?i=integral+of+%5Csqrt%7B(4-x%5E2)%5E%7B-9%7D%7D+from+0+to+%5Cfrac%7B3%7D%7B2%7D

Hoàng Nhung
Xem chi tiết
NgọA Hổ
Xem chi tiết
Vũ Minh Hiếu
23 tháng 2 2017 lúc 21:52

Mình giải giúp b câu 1 này

Ở phần mẫu bạn biến đổi \(cos^2xsin^2x=\frac{1}{4}\left(4cos^2xsin^2x\right)=\frac{1}{4}sin^22x\)

Đặt t = sin2x => \(d\left(t\right)=2cos2xdx\)

Đổi cận \(x=\frac{\pi}{4}=>t=1\) \(x=\frac{\pi}{3}=>t=\frac{\sqrt{3}}{2}\)

Ta có biểu thức trên sau khi đổi biến và cận

\(\int\limits^{\frac{\sqrt{3}}{2}}_1\frac{\frac{1}{2}dt}{\frac{1}{4}t^2}=\int\limits^{\frac{\sqrt{3}}{2}}_1\frac{2}{t^2}dt=\left(-\frac{2}{t}\right)\)lấy cận từ 1 đến \(\frac{\sqrt{3}}{2}\) \(=-\frac{2}{\frac{\sqrt{3}}{2}}-\left(-\frac{2}{1}\right)=2-4\frac{\sqrt{3}}{3}\) => a=2 và b=-4/3 vậy A=2/3 nhé

Akai Haruma
26 tháng 2 2017 lúc 18:43

Câu 1)

Ta có:

\(I=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\cos 2x}{\cos^2 x\sin^2 x}dx=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\cos^2x-\sin ^2x}{\cos^2 x\sin^2 x}dx\)

\(=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin^2 x}-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\cos ^2x}=-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}d(\cot x)-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}d(\tan x)\)

\(=-\left ( \frac{\sqrt{3}}{3}-1 \right )-(\sqrt{3}-1)=2-\frac{4}{3}\sqrt{3}\Rightarrow a+b=\frac{2}{3}\)

Akai Haruma
26 tháng 2 2017 lúc 19:28

Câu 2)

\(I=\underbrace{\int ^{\frac{\pi}{2}}_{0}\sin ^2xdx}_{A}+\underbrace{\int ^{\frac{\pi}{2}}_{0}\frac{\sin x\cos 2xdx}{\sqrt{1+3\cos x}}}_{B}\)

\(A=\int ^{\frac{\pi}{2}}_{0}\frac{1-\cos 2x}{2}dx=\)\(\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\left ( \frac{x}{2}-\frac{\sin 2x}{4} \right )=\frac{\pi}{4}\)

\(B=-\int ^{\frac{\pi}{2}}_{0}\frac{(2\cos ^2x-1)d(\cos x)}{\sqrt{1+3\cos x}}\). Ta đặt \(\sqrt{1+3\cos x}=t\)

\(B=B=\int ^{2}_{1}\frac{\left [ \frac{2(t^2-1)^2}{9}-1\right ]d\left ( \frac{t^2-1}{3} \right )}{t}=\frac{2}{27}\int ^{2}_{1}\left ( 2t^4-4t^2-7 \right )dt\)

\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\frac{2}{27}\left ( \frac{2t^5}{5}-\frac{4t^3}{3}-7t \right )=\frac{-118}{405}\)

\(\left\{\begin{matrix} a=\frac{1}{4}\\ b=-118\\ c=405\end{matrix}\right.\Rightarrow a+b+c=287,25\)

Bài này mà ngồi trong phòng thi mà giải tay thì chết cmnr. Bạn lên youtube xem anh theluc giải bằng casio cho nhanh.

Sách Giáo Khoa
Xem chi tiết
Phan Thùy Linh
1 tháng 4 2017 lúc 23:47

Ôn tập cuối năm giải tích lớp 12

CÔNG CHÚA THẤT LẠC
9 tháng 4 2017 lúc 10:25

Giải bài 12 trang 147 sgk Giải tích 12 | Để học tốt Toán 12