√32 + √62/√31 - 12 √1/2 + 6/√2
Ta có: (1/4)*(2/6)*(3/8)*(4/10)*(5/12)*...*(30/62)*(31/64)=2^x. Tìm x
Ta có: \(2^x=\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{12}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}\)
\(\Leftrightarrow2^x=\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot31}{2\cdot\left(2\cdot3\cdot4\cdot...\cdot31\right)\cdot64}\)
\(\Leftrightarrow2^x=\dfrac{1}{2}\cdot\dfrac{1}{64}=\dfrac{1}{128}\)
\(\Leftrightarrow2^x=\dfrac{1}{2^6}\)
\(\Leftrightarrow2^{x+6}=1\)
\(\Leftrightarrow x+6=0\)
hay x=-6
Vậy: x=-6
`1/4 . 2/6 . 3/8 ... . 30/62 .31/64 =2^x`
`-> (1.2.3....30.31)/(4.6.8....62.64)=2^x`
`-> (1.(2.3...31))/(2.(2.3.4...31).32)=2^x`
`-> 1/(2.32)=2^x`
`-> 1/64=2^x`
`-> 1/(2^6)=2^x`
`-> x=-6`.
tìm x biết :
(1/4).(2/6).(3/8).(4/10).(5/12)....(30/62).(31/64) = 2^x
Có: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}=\frac{1}{2.2}.\frac{2}{2.3}.\frac{3}{2.4}...\frac{30}{2.31}.\frac{31}{2.32}=\frac{1}{2}.\frac{1}{2}.\frac{1}{2}...\frac{1}{2}.\frac{1}{2}.\frac{1}{32}\)
\(=\frac{1}{2^{31}.2^5}=\frac{1}{2^{36}}=2^x\)\(\Rightarrow1=2^x.2^{36}=2^{36+x}\)\(\Rightarrow2^{36+x}=2^0\Rightarrow36+x=0\Rightarrow x=-36\)
Tìm x, biết \(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
=>\(1\cdot\dfrac{2}{4}\cdot\dfrac{3}{6}\cdot...\cdot\dfrac{31}{62}\cdot\dfrac{1}{64}=2^x\)
=>\(2^x=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot...\cdot\dfrac{1}{2}\cdot\dfrac{1}{64}=\left(\dfrac{1}{2}\right)^{30}\cdot\left(\dfrac{1}{2}\right)^6=\dfrac{1}{2^{36}}\)
=>x=-36
1/4 x 2/6 x3/8 x 4/10 x 5/12 x....x 30/62 x 31/64=2n. Tìm n
<=> \(\frac{1.2.3....31}{4.6.8....64}=2^n\Rightarrow\frac{1.2.3....30.31}{2\left(2.3.4.5...31\right).32}=2^n\Leftrightarrow\frac{1}{2.32}=2^n\Leftrightarrow\frac{1}{2^6}=2^n\)
=> 2^6.2^n = 1
=> 2^ (n + 6 ) = 2^0
=> n+ 6 = 0
=> n = - 6
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}....\frac{31}{64}=\frac{1.2.3....31}{4.6.8....64}=\frac{1.2.3....31}{2.3.2.4....2.32}=\frac{1.2.3....31}{2^{30}.\left(3.4....32\right)}=\frac{2}{2^{30}.32}=\frac{1}{2^{34}}=2^{-34}=2^n=>n=-34\)
2^n × 2³¹ = \(\dfrac{ }{ }\)2/4×4/6×6/8×...×62/64
2^n×2³¹=1/32=2^-5
2^n=2^-5 ÷ 2³¹=2^-36
=>n=-36
1. Tính một cách hợp lý
a) 387+(-224)+(-87)
b) (-75)+379+(-35)
c) 11+(-13)+15+(-17)
d) (-21)+24+(-27)+31
2. Tính một cách hợp lý:
a. (62-81)-(12-59+9)
b. 39+(13-26)-(62+39)
c. 32-34+36-38+40-42
d.92-(55-8)+(-45)
Bài 2:
a. $=62-81-12+59-9=(62-12)+(59-9)-81$
$=50+50-81=100-81=19$
b. $=39+13-26-62-39=(39-39)+13-(26+62)$
$=0+13-88=-(88-13)=-75$
c. $=(32-42)+(36-34)+(40-38)=10+2+2=14$
d. $=92-55+8-45=(92+8)-(55+45)=100-100=0$
Bài 1:
a. $=(387-87)-224=300-224=76$
b. $=-(75+35)+379=-110+379=379-110=269$
c. $=(11+15)-(13+17)=25-30=-5$
d. $=(31-21)-(27-24)=10-3=7$
Tìm số nguyên n, biết rằng:
\(\dfrac{1}{4} . \dfrac{2}{6} . \dfrac{3}{8} .\dfrac{4}{10} . \dfrac{5}{12} .... \dfrac{30}{62} . \dfrac{31}{64} = 2^{n}\)\(\)
\(\dfrac{1}{2.2}.\dfrac{2}{2.3}.....\dfrac{31}{64}=2^x\\ =>\dfrac{1}{2.2.2.....2.64}=2^x\\ \dfrac{1}{2^{30}.26}=2^x\\ =>\dfrac{1}{2^{36}}=2^x\\ =>2^{-36}=2^x\\ =>x=-36\)
Ta có: \(2^n=\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}....\dfrac{30}{62}.\dfrac{31}{64}\)
⇔ \(2^n=\dfrac{1.2.3.4....31}{2.\left(2.3.4.....1\right).64}=\)
⇔ \(2^n=\dfrac{1}{2}.\dfrac{1}{64}=\dfrac{1}{128}\) \(\Leftrightarrow\) \(2^n=\dfrac{1}{2^6}\)
⇔ \(2^{x+6}=1\)
⇔ \(x+6=0\)
⇒ \(\left\{{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
\(\frac{1}{4}\times\frac{2}{6}\times\frac{3}{8}\times\frac{4}{10}\times\frac{5}{12}.....\frac{30}{62}\times\frac{31}{64}=2^x\)
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}.....\frac{30}{62}.\frac{31}{64}=2^x\)
=>\(\frac{1}{2.2}.\frac{2}{2.3}.\frac{3}{2.4}.\frac{4}{2.5}.\frac{5}{2.6}....\frac{30}{2.31}.\frac{31}{2.32}=2^x\)
=>\(\frac{1.2.3.4.5....30.31}{2.2.2.3.2.4.2.5.2.6...2.31.2.32}=2^x\)
=>\(\frac{2.3.4.5...30.31}{2^{31}.32.\left(2.3.4.5...31\right)}=2^x\)
=>\(\frac{1}{2^{31}.2^5}=2^x\)
=>\(\frac{1}{2^{36}}=2^x\)
=> x=36
Vậy x=36
Chúc bn học tốt nhé!
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+30+31+32+32+...+1000000
số số hạng là :
( 1000000 - 1 ) : 1 + 1 = 1000000
tổng là :
( 1000000 + 1 ) x 1000000 : 2 = 500000500000
đáp số : 500000500000