Chứng minh rằng: trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau.
Chứng minh rằng: trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau.
Vẽ đường tròn tâm O, các dây cung AB // CD.
Cần chứng minh
Cách 1:
Kẻ bán kính MN // AB // CD
MN // AB
+ TH1: AB và CD cùng nằm trong một nửa đường tròn.
.
+ TH2: AB và CD thuộc hai nửa đường tròn khác nhau.
Cách 2:
Kẻ OH ⊥ AB; OK ⊥ CD (H ∈ AB, K ∈ CD)
Vì AB // CD ⇒ O, H, K thẳng hàng.
ΔOAB có OA = OB
⇒ ΔOAB cân tại O
⇒ đường cao OH đồng thời là đường phân giác
⇒
Chứng minh tương tự:
Chứng minh rằng trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau.
Giả sử AB và CD là các dây song song của đường tròn (O).
Kẻ OI ⊥ AB (I ∈ AB) và OK ⊥ CD (K∈CD).
Do AB //CD nên I,O,K thẳng hàng.
Do các tamgiác OAB, OCD là các tam giác cân đỉnh O nên các đường cao kẻ từ đỉnh đồng thời là phân giác.
Vì vậy ta có: Góc ∠O1 = ∠O2, ∠O3 = ∠O4
Giả sử AB nằm ngoài góc COD, ta có: ∠AOC = 1800 – (∠O1 + ∠O3) = 1800 -(∠O2 + ∠O4) = ∠BOD
Suy ra cung AC= cung BD.
Nghĩa là hai cung bị chắn giữa hai dây song song thì bằng nhau. Các trường hợp khác ta chứng minh tương tự.
Bài này có 2 TH, ta phải xét cả 2 TH (vì ko có ghi rõ đề):
TH 1:
Xét Δ
AOB có:
OA = OB (cùng bán kính)
Do đó: Δ
AOB cân tại A
⇒
ˆOAB=ˆOBA
Ta có: ˆAOM=ˆOBA
(2 góc so le trong do AB//MN)
ˆNOB=ˆOBA
( // )
mà ˆOAB=ˆOBA
(cmt)
⇒
ˆMOA=ˆNOB
(1)
CM tương tự, ta được: ˆMOC=ˆNOD
(2)
Từ (1) và (2) suy ra \(\widehat{AOC}=\widehat{BOD}\)
⇒ \(\widebat{AC}=\widebat{BD}\)
TH 2 :
CM y như câu a) (mà chỉ thay đổi cách CM \(\widehat{AOC}=\widehat{BOD}\) )
Chứng minh rằng trong 1 đường tròn, 2 cung bị chắn bởi 2 dây song song thì bằng nhau.
Gọi đường tròn Ở, 2 dây AB ss với CD
xet Tu giac ABCD co AD=AO+OD
CB=CO+OB
mà CO=OB=OA=OD
=> tu giac ABCD là hinh chu nhat
=>AOB=COD
=>cung CD=cungAB
Chứng minh rằng : Trong một đường tròn , hai cung bị chặn bởi hai dây song song thì bằng nhau .
Ai giúp mk vs :) tks
Kẻ \(OH\perp AB;OK\perp CD\left(H\in AB,K\in CD\right)\)
Vì AB // CD => O, H, K thẳng hàng.
Tam giác OAB có OA = OB
=> Tam giác OAB cân tại O
=> Đường cao OH đồng thời là đường phân giác
=> ^AOH = ^BOH
Chứng minh tương tự , ta có :
^COK = ^DOK
=> ^AOH - ^COK = ^BOH - ^DOK
hay ^AOC = ^BOD
\(\Rightarrow\widebat{AC}=\widebat{BD}\)
Chứng minh hai cung bị chắn bởi hai dây song song thì bằng nhau
Trường hợp 1: Tâm O ở giữa của hai dây
Kẻ OM ⊥ AB, suy ra OM ⊥ CD tại N
Ta chứng minh được A O M ^ = B O M ^ (1)
Tương tự C O N ^ = D O N ^ (2)
Từ (1), (2) => A O C ^ = B O C ^ => A C ⏜ = B D ⏜
Trường hợp 2: Tâm O nằm ngoài khoảng hai dây
Kẻ OM ⊥ AB suy ra OM ⊥ CD tại N
Tương tự A O C ^ = B O C ^ => A C ⏜ = B D ⏜
B1: Chứng minh rằng trong một đường tròn, hai dây cung không cắt nhau AB và CD là song song khi và chỉ khi hai cung AC và BD bằng nhau B2: Cho hai đường tròn tiếp xúc trong tại điểm A và BC là 1 dây của đường tròn lớn đường tiếp xúc với đường tròn nhỏ tại điểm D. Chứng minh rằng AD là phân giác của góc BAC
chứng minh rằng trong một đường tròn hai cung bị chắn giữa hai giây bằng nhau
2 trường hợp
Chứng minh định lí : "Hai đoạn thẳng song song bị chắn giữa hai đường thẳng song song thì bằng nhau"
Cái này nếu lak lóp 8 thì dễ rồi! Tính chất đoạn chắn
1,Chứng minh định lí : "Hai đoạn thẳng song song bị chắn giữa hai đường thẳng song song thì bằng nhau"
2,Chứng minhđịnh lí : "Trong tam giác vuông , trung tuyến tương ứng với cạnh huyền bằng nửa cạnh huyền"