Cho dãy số ( u n ) thỏa mãn u n = u n - 1 + 6 , ∀ n ≥ 2 và log 2 u 5 + log 2 u 9 + 8 = 11 . Đặt S n = u 1 + u 2 + . . . + u n . Tìm số tự nhiên n nhỏ nhất thỏa mãn S n ≥ 2 5 .
A. 5
B. 4
C. 3
D. 7
Dãy số thỏa mãn với mọi . Tính lim un
.
Cho dãy u(n) thỏa mãn log 3 u 1 2 - 3 log u 5 = log 3 u 2 + 9 - log u 1 6 và u n + 1 = u n + 3 u 1 > 0 với mọi n≥1 Đặt S n = u 1 + u 2 + . . . + u n Tìm giá trị nhỏ nhất của n để S n > 5 n 2 + 2018 2
A. 1647
B. 1650
C. 1648
D. 1165
Cho dãy số u n thỏa mãn u 1 = 2018 ; u n + 1 = u n + n 2 với n. Có bao nhiêu số nguyên dương n thỏa mãn u n ≤ 330368
A. 2017.
B. 100.
C. 101.
D. 2018.
Số số tự nhiên n thỏa mãn 3n+8 chia hết cho n+2
Vậy n=
ta có:
3n+8= 3.(n+2)+2 (1)
Mà n+2chia hết cho n+2 suy ra 3.(n+2) chia hết cho n+2 (2)
Từ (1) và (2) suy ra 2 chia hết cho n+2.
Suy ra n+2 thuộc {1;2}.
Suy ra n=0
Vậy có 1 giá trị n thỏa mãn
Đúng 100% nha, tick cho mình nhé
3n + 8 chia hết cho n + 2 => 3(n + 2) + 2 chia hết cho n + 2
=> n + 2 \(\in\)Ư(2) = {1;2}
=> n = {-1;0}
Vì n\(\in\)N nên n = 0
Cho dãy (un) thỏa mãn: \(\left\{{}\begin{matrix}u_1=5\\u_{n+1}=\dfrac{u^{2022}_n+3.u_n+16}{u_n^{2021}-u_n+11}\end{matrix}\right.\), ∀nϵN*
CMR (un) tăng
Xét hàm số \(f\left(x\right)=\dfrac{x^{2022}+3x+16}{x^{2021}-x+11}\), ta cần cm
\(f\left(x\right)\ge x\) (*)
Thật vậy, (*) \(\Leftrightarrow x^{2022}+3x+16\ge x^{2022}-x^2+11x\)
\(\Leftrightarrow x^2-8x+16\ge0\)
\(\Leftrightarrow\left(x-4\right)^2\ge0\) (luôn đúng)
Vậy \(f\left(x\right)\ge x,\forall x\)
\(\Rightarrow u_{n+1}=f\left(u_n\right)\ge u_n\) nên \(\left(u_n\right)\) là dãy tăng.
Cho dãy số u n thỏa mãn log 3 2 u 5 - 63 = 2 log 4 u n - 8 n + 8 , ∀ n ∈ N * . Đặt S n = u 1 + u 2 + . . . + u n . Tìm số nguyên dương lớn nhất n thỏa mãn u n . S 2 n u 2 n . S n < 148 75
A. 18
B. 17
C. 16
D. 19
Cho dãy số u n thỏa mãn u n = u n - 1 + 6 , ∀ n ≥ 2 và log 2 u 5 + log 2 u 9 + 8 = 11 . Đặt S n = u 1 + u 2 + . . . + u n . Tìm số tự nhiên n nhỏ nhất thỏa mãn S n ≥ 2 5 .
A. 5
B. 4
C. 3
D. 7
Cho dãy số u n thỏa mãn u n = u n − 1 + 6 , ∀ n ≥ 2 và log 2 u 5 + log 2 u 9 + 8 = 11. Đặt S n = u 1 + u 2 + ... + u n . Tìm số tự nhiên n nhỏ nhất thỏa mãn S n ≥ 20172018.
A. 2587
B. 2590
C. 2593
D. 2584
Cho dãy số u n thỏa mãn u n = u n - 1 + 6 , ∀ n ⩾ 2 và log 2 u 5 + log 2 u 9 + 8 = 11 . Đặt S n = u 1 + u 2 + . . . + u n . Tìm số tự nhiên n nhỏ nhất thỏa mãn S n ⩾ 20172018 .
A. 2587.
B. 2590.
C. 2593.
D. 2584.