Trong không gian Oxyz cho mặt cầu có phương trình x 2 + y 2 + z 2 - 2 x + 4 y - 6 z + 9 = 0 . Tìm tọa độ tâm I và bán kính R của mặt cầu
A. I(1;-2;3), R=5
B. I(-1;2;-3), R=5
C. I(1;-2;3), R= 5
D. I(-1;2;-3), R= 5
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
( x - 1 ) 2 + ( y + 2 ) 2 + ( z + 3 ) 2 = 25
Tìm tọa độ tâm I và bán kính R của mặt cầu (S)
A. I(1; -2; -3); R = 25
B. I(-1; 2; 3); R = 5
C. I(-1; 2; 3); R = 25
D. I(1; -2; -3); R = 5
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x^2+y^2+z^2-6x bán kính R=9 có phương trình là
A. ( x + 4 ) 2 + ( y - 5 ) 2 + ( z + 6 ) 2 = 9
B. ( x - 4 ) 2 + ( y + 5 ) 2 + ( z - 6 ) 2 = 81
C. ( x - 4 ) 2 + ( y + 5 ) 2 + ( z - 6 ) 2 = 9
D. ( x + 4 ) 2 + ( y - 5 ) 2 + ( z + 6 ) 2 = 81
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là: ( x + 1 ) 2 + ( y - 4 ) 2 + ( z + 3 ) 2 = 36. Số mặt phẳng (P) chứa trục Ox và tiếp xúc với mặt cầu (S) là:
A. 0
B. 1
C. 2
D. Vô số
Đáp án A
Mặt cầu (S) có tâm I(-1;4;-3) và có bán kính R = 6. Gọi H là hình chiếu vuông góc của I trên trục Ox. Ta có H(-1;0;0) và IH=5.
Gọi K là hình chiếu vuông góc của I trên mặt phẳng (P). Ta có
d(I; (P)) = IK ≤ IH = 5 < R = 6
Do đó mặt phẳng (P) luôn cắt mặt cầu (S) theo một đường tròn. Vậy không tồn tại mặt phẳng (P) chứa Ox và tiếp xúc với (S)
Trong không gian tọa độ Oxyz, cho mặt cầu (S) có phương trình (x-2)2 + (y+1)2 + (z-3)2 = 20. Mặt phẳng có phương trình x-2y+2z-1=0 và đường thẳng ∆ có phương trình x 1 = y + 2 2 = z + 4 - 30 . Viết phương trình đường thẳng ∆ ' nằm trong mặt phẳng α vuông góc với ∆ đồng thời cắt (S) theo một dây cung có độ dài lớn nhất.
Trong không gian Oxyz, cho mặt cầu (S): x - 1 2 + y + 2 2 + ( z - 5 ) 2 = 9 . Phương trình nào dưới đây là phương trình mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm A(2;-4;3)?
A. x – 6y + 8z – 50 = 0
B. x – 2y – 2z – 4 = 0
C. x – 2y – 2z + 4 = 0
D. 3x – 6y + 8z – 54 = 0
Trong không gian Oxyz, cho mặt cầu (S)có phương trình ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 . Tọa độ tâm I và bán kính R của (S) là
A. I(1;2;3) và R=5.
B. I(-1;-2;-3) và R=5.
C. I(1;2;3) và R=25.
D. I(-1;-2;-3) và R=25
Trong không gian với hệ toạ độ \(Oxyz\), cho mặt cầu \(\left(S\right)\) có phương trình \(x^2+\left(y+1\right)^2+\left(z-2\right)^2=10\) và và đường thẳng \(\Delta\) có phương trình chính tắc là \(\dfrac{x}{2}=\dfrac{y}{-1}=\dfrac{z-1}{2}\). Gọi \(\left(P\right)\) là mặt phẳng thay đổi chứa \(\Delta\). Khi \(\left(P\right)\cap\left(S\right)\) theo đường tròn có bán kính nhỏ nhất, hãy viết phương trình mặt phẳng \(\left(P\right)\) và tính bán kính đường tròn giao tuyến đó.
A. \(\left(P\right):2x-2y+3z+4=0; r=1\)
B. \(\left(P\right):x+y+4z-2=0;r=6\)
C. \(\left(P\right):2x+2y-z+1=0;r=3\)
D. \(\left(P\right):3x-y+2z-1=0;r=4\)
Để tìm phương trình mặt phẳng (P) và tính bán kính đường tròn giao tuyến, ta cần tìm điểm giao giữa mặt cầu (S) và đường thẳng Δ. Đầu tiên, ta thay đổi phương trình đường thẳng Δ từ phương trình chính tắc sang phương trình tham số.
Phương trình tham số của đường thẳng Δ là: x = t y = 1 + t z = 1 + 2t
Tiếp theo, ta thay các giá trị x, y, z vào phương trình mặt cầu (S) để tìm điểm giao: (t)2 + (1 + t + 1)2 + (1 + 2t - 2)2 = 10 t2 + (t + 2)2 + (2t - 1)2 = 10 t2 + t2 + 4t + 4 + 4t2 - 4t + 1 - 10 = 0 6t2 + 4t - 5 = 0
Giải phương trình trên, ta tìm được t = 1/2 và t = -5/6. Thay t vào phương trình tham số của Δ, ta có các điểm giao là: Điểm giao thứ nhất: (1/2, 3/2, 5/2) Điểm giao thứ hai: (-5/6, 1/6, -1/6)
Tiếp theo, ta tìm phương trình mặt phẳng (P) đi qua hai điểm giao này. Sử dụng công thức phương trình mặt phẳng đi qua hai điểm: (x - x1)(y2 - y1) - (y - y1)(x2 - x1) = 0
Điểm giao thứ nhất: (1/2, 3/2, 5/2) Điểm giao thứ hai: (-5/6, 1/6, -1/6)
Thay các giá trị vào công thức, ta có: (x - 1/2)((1/6) - (3/2)) - (y - 3/2)((-5/6) - (1/2)) + (z - 5/2)((-1/6) - (3/2)) = 0 -2x + 2y - z + 4 = 0
Vậy phương trình mặt phẳng (P) là: -2x + 2y - z + 4 = 0.
Tiếp theo, để tính bán kính đường tròn giao tuyến, ta tính khoảng cách từ tâm mặt cầu đến mặt phẳng (P). Khoảng cách này chính bằng bán kính đường tròn giao tuyến.
Đặt điểm A là tâm mặt cầu (x0, y0, z0) = (0, -1, 2). Khoảng cách từ A đến mặt phẳng (P) được tính bằng công thức: d = |Ax + By + Cz + D| / sqrt(A^2 + B^2 + C^2)
Thay các giá trị vào công thức, ta có: d = |(0)(-2) + (-1)(2) + (2)(-1) + 4| / sqrt((-2)^2 + 2^2 + (-1)^2) d = 5 / sqrt(9) d = 5/3
Vậy bán kính đường tròn giao tuyến là 5/3.
Vậy đáp án đúng là: (P): -2x + 2y - z + 4 = 0; r = 5/3
Trong không gian cho Oxyz, mặt cầu (S) có phương trình x 2 + ( y - 4 ) 2 + ( z - 1 ) 2 = 25 . Tâm mặt cầu (S) là điểm
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 3 và hai đường thẳng d x : x - 2 1 = y 2 = z - 1 - 1 ; △ : x 1 = y 1 = z - 1 - 1 Phương trình nào dưới đây là phương trình mặt phẳng cắt mặt cầu (S) theo giao tuyến là một đường tròn (C) có bán kính bằng 1 và song song với d và △ .
Trong không gian Oxyz, cho mặt cầu (S):
x - 1 2 + y + 2 2 + z - 5 2 = 9 . Phương trình nào dưới đây là phương trình mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm A(2;-4;3)?
A. x – 6y + 8z – 50 = 0
B. x – 2y – 2z – 4 = 0
C. x – 2y – 2z + 4 = 0
D. 3x – 6y + 8z – 54 = 0