Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2018 lúc 6:48

Đáp án D

Dễ thấy f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {x - 2} \right)

Do f (x) đổi dấu từ âm sang dương khi qua điểm x = 2 nên  f (x) đạt cực trị tại x =2 

Hàm số f (x)  nghịch biến trên  do f'\left( x \right)  0\left( {\forall x  2} \right)

Đặt t = 2 - {x^2} \Rightarrow g\left( x \right) = f\left( t \right) =  \Rightarrow g'\left( x \right) = f'\left( t \right).t'\left( x \right) = f'\left( {2 - {x^2}} \right)\left( { - 2x} \right)  = {\left( {2 - {x^2} + 1} \right)^2}\left( {2 - {x^2} - 2} \right)\left( { - 2x} \right) = {\left( {3 - {x^2}} \right)^2}.3{x^2} \Rightarrow g\left( x \right)

 đồng biến trên \left( {0; + \infty } \right)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 4 2019 lúc 3:09

Đáp án A.

Ta có g ' x = x 2 - 2 ' f ' x 2 - 2 = 2 x . f ' x 2 - 2 ; ∀ x ∈ ℝ .  

Khi đó g ' x < 0 ⇔ x . f ' x 2 - 2 < 0 ⇔ [ x < 0 f ' x 2 - 2 > 0 x > 0 f ' x 2 - 2 < 0 ⇔ [ x < 0 x 2 - 2 > 2 x > 0 x 2 - 2 < 2 ⇔ [ 0 < x < 2 x < - 2 .  

Vậy hàm số nghịch biến trên khoảng - ∞ ; - 2  và (0;2) khẳng định A là sai.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 7 2019 lúc 13:12

Đáp án là A 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 1 2018 lúc 18:27

Đáp án là D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 8 2019 lúc 15:39

Từ đồ thị hàm số f(x) ta thấy đồ thị cắt trục hoành tại ba điểm phân biệt có hoành độ x=0;x=1;x=3 

Lại thấy đồ thị hàm số y=f(x) có ba điểm cực trị nên

 

Hàm số y = f x 2  có đạo hàm y'=2f(x).f '(x) 

Xét phương trình  

Ta có BXD của y' như sau

Nhận thấy hàm số y = f x 2  có y' đổi dấu từ âm sang dương tại ba điểm x=0;x=1;x=3 nên hàm số có ba điểm cực tiểu. Và y' đổi dấu từ dương sang âm tại hai điểm x = x 1 ; x = x 2  nên hàm số có hai điểm cực đại.

Chọn đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 12 2017 lúc 16:28

Đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 12 2018 lúc 4:01

Chọn A.

Giải phương trình  g ' x = 0

Từ đồ thị hàm số  y = f ' x

ta có  f ' x = - 1

Ta có BBT của hàm g (x)

Từ BBT ta thấy hàm số g (x) đạt cực tiểu tại x = 1.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 3 2017 lúc 15:51

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 4 2017 lúc 2:29

Chọn A

Ta có: g(x) = f(x-2017) - 2018x + 2019.

Nhận xét: tịnh tiến đồ thị hàm số y = f'(x) sang bên phải theo phương của trục hoành 2017 đơn vị ta được đồ thị hàm số y = f'(x-2017) . Do đó, số nghiệm của phương trình f'(x) = 2018 bằng số nghiệm của phương trình (*).

Dựa vào đồ thị ta thấy phương trình (*) có nghiệm đơn duy nhất hay hàm số đã cho có duy nhất 1 điểm cực trị.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2017 lúc 5:07