Tìm các giá trị thực của tham số m sao cho đồ thị hàm số y = 1 3 x 3 − 3 m x 2 + m có các điểm cực đại và cực tiểu nằm về hai phía của trục hoành.
A. 0 < m < 1 6 .
B. m ≠ 0 .
C. m > 1 6 .
D. m < 1 6 .
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{5x-3}{x^2-2mx+1}\) không có tiệm cận đứng .
Do mẫu có bậc 2 còn tử bậc 1 \(\Rightarrow\)hàm không có tiệm cận đứng khi và chỉ khi phương trình \(x^2-2mx+1=0\) vô nghiệm
\(\Leftrightarrow\Delta'=m^2-1< 0\)
\(\Rightarrow-1< m< 1\)
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số y = 2 x - 3 ( m - 1 ) x 2 + 4 có tiệm cận ngang
A. m > 0
B. m ≥ 1
C. m > 1
D. Không có giá trị nào của m
Ta có
Vậy với m > 1 thì đồ thị hàm số có hai tiệm cận ngang là
Chọn đáp án C.
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Tìm tổng tất cả các giá trị thực của tham số m sao cho đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = 2 x 3 + 3 ( m - 1 ) x 2 + 6 m ( 1 - 2 m ) x song song đường thẳng y= -4x.
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2 x 3 - 3 ( m + 1 ) x 2 + 6 m x có hai điểm cực trị A , B sao cho đường thẳng AB vuông góc với đường thẳng : y = x + 2 .
Chọn C
[Phương pháp tự luận]
Ta có : y = 6 x 2 - 6 ( m + 1 ) x + 6 m
Điều kiện để hàm số có 2 điểm cực trị là m ≠ 1
Hệ số góc đt AB là k = - ( m - 1 ) 2
Đt AB vuông góc với đường thẳng y = x + 2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=2x3-3( m+1) x2+ 6mx có hai điểm cực trị A; B sao cho đường thẳng AB vuông góc với đường thẳng y= x+ 2.
A. 0; 3
B. 2; 4
C. 0; 2
D. 1; 3
+ Ta có đạo hàm y’ = 6x2- 6( m+ 1) x+ 6m
Điều kiện để hàm số có 2 điểm cực trị là : m≠ 1
Tọa độ 2 điểm cực trị là A( 1 ; 3m-1) và B ( m ; -m3+ 3m2)
+ Hệ số góc đường thẳng AB là :k= - ( m-1) 2
+ Đường thẳng AB vuông góc với đường thẳng y= x+ 2 khi và chỉ khi k= -1
Hay – ( m-1) 2= -1( vì 2 đường thẳng vuông góc với nhau thì tích hai hệ số góc bằng -1)
Chọn C.
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = 2 x 3 - 2 + m x + m cắt trục hoành tại 3 điểm phân biệt
A. m > - 1 2
B. m > - 1 2 , m ≠ 4
C. m > 1 2
D. m ≤ 1 2
Tìm tất cả các giá trị của tham số m sao cho đồ thị hàm số y = x − 1 + 2017 x 2 − 2 m x + m + 2 đúng 3 đường tiệm cận?
A. 2 < m ≤ 3
B. 2 ≤ m ≤ 3
C. m < 2
D. m > 2 hoặc m < − 1
Đáp án A
Ta có: lim x → + ∞ y = 0 ⇒ đồ thị hàm số có 1 tiệm cận ngang là y = 0 .
Để đồ thị hàm số có 3 tiệm cận thì phương trình : g x = x 2 − 2 m x + m + 2 = 0 có 2 nghiệm phân biệt
x 1 > x 2 ⇔ Δ ' = m 2 − m − 2 > 0 x 1 − 1 x 2 − 1 ≥ 0 x 1 − 1 + x 2 − 1 > 0 ⇔ m + 1 m − 2 > 0 x 1 x 2 − x 1 + x 2 + 1 ≥ 0 x 2 + x 2 > 2 ⇔ m + 1 m − 2 > 0 m + 2 − 2 m + 1 > 0 2 m > 2 ⇔ 3 ≥ m > 2.
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{\sqrt{1-x}}{x-m}\) có tiệm cận đứng .
ĐKXĐ: \(x\le1\)
Hàm có tiệm cận đứng khi và chỉ khi phương trình:
\(x-m=0\) có nghiệm \(x< 1\)
\(\Leftrightarrow m< 1\)
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số y = x + 1 m 2 x 2 + m − 1 có bốn đường tiệm cận.
A. m < 1 hoặc m>1
B. với mọi giá trị m
C. m > 0
D. m < 1 và m ≠ 0
Đáp án là D.
Đồ thị hàm số có bốn đường tiệm cận khi phương trình m 2 x 2 + m − 1 = 0 có hai nghiệm phân biệt khác -1 ⇔ m 2 ≠ 0 − m 2 m − 1 > 0 ⇔ m ≠ 0 m < 1 .