Cho tam giác ABC vuông ở A,biết BC=20 cm,4AB=3AC.Tính Ab,AC
Cho tam giác ABC vuông tại A. Biết BC = 20 cm và 4AB = 3AC. Tính độ dài cạnh AB, AC
cho tam giác abc vuông tại a
a) biết bc=20 cm; 4ab=3ac tính ab, ac
b) kẻ ah vuông góc với bc và ac=20 cm; bh=9 cm ch=16 cm tính ab, ah
a, Ta có : 4AB = 3CA => AB /3 = AC /4 => AB^2/9 = AC^2/16
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{BC^2}{25}=\dfrac{400}{25}=16\Rightarrow AB=12cm;AC=16cm\)
b, Ta có : BH + CH = BC = 25 cm
Theo định lí Pytago tam giác ABC vuông tại A
\(AB=\sqrt{BC^2-AC^2}=15cm\)
Theo định lí Pytago tam giác AHB vuông tại H
\(AH=\sqrt{AB^2-HB^2}=12cm\)
Cho tam giác ABC. Biết BC =52 cm ,AB= 20 cm , AC= 48 cm
a, CMR tam giác ABC vuông ở A
b, Kẻ AH vuông goc với BC. Tính AH
Đề có sai ko??? Vẽ hình nó ko có cắt!!
:
Bài 1, Lấy điểm A nằm trong xoy < 90 độ . gọi M là trung điểm của OA. Từ M kẻ đường thẳng vuông góc với OA cắt Õ ở B và cắt Oy ở C
A. cm : BO=BA
B. cm : CO=CA
Bài 2 : Cho tam giác Abc vuông tại A . Tính cạnh BC nếu biết :
a . AB + Ac = 17cm và AB - AC = 7cm
b. 4AB= 3AC và AB+AC = 70 cm
Bài 3 : Cho tam giác Abc , D thuộc tia đối của tia AB và E thuộc tia đối của tia AC sao cho AD = AB và AE=AC . Kẻ BH vuông góc AC và DK vuông góc AE
a. cm tam giác ADC = tam giác ADE
b. cm : tam giác BHC = tam giác DKE suy ra góc CBH = góc EDK
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại 4AB=3AC và BC=15 cm. Tính AB,AC
Vay 40% so tien bao la 2000 dong
Vậy số tiền bao la: 2000:40x100=5000 dong
nha ban
Cho tam giác ABC vuông tại A biết BC=20cm và 4AB=3AC. Tính AB,AC
\(\Delta ABC\)vuông tại \(A\Leftrightarrow AB^2+AC^2=BC^2=400\)
\(4AB=3AC\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\Leftrightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{400}{25}=16\)
\(\Rightarrow\hept{\begin{cases}AB^2=9.16=144\Leftrightarrow AB=12\\AC^2=16.16\Leftrightarrow AC=16\end{cases}}\)
Cho tam giác ABC biết AB = 15cm, AC = 20 cm, BC = 25 cm.
a) Chứng minh tam giác ABC vuông?
b) Kẻ AK vuông góc với BC( K thuộc BC), biết AH= 12cm. Tính số đo cạnh BK, KC?
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(BK=\sqrt{AB^2-AH^2}=9\left(cm\right)\)
CK=BC-BK=16(cm)
Cho Tam Giác ABC biết BC = 52 cm,AB = 20 cm, AC = 48 cm
a) Chứng minh Tam Giác ABC vuông tạ A
b) Kẻ AH vuông góc với BC. Tính AH
a) tam giác ABC có BC^2=52^2=2704
mà AB^2+AC^2=20^2+48^2=2704
=> BC^2=AB^2+AC^2
=> tam giác ABC vuông tại A
b) tam giác ABC vuông tại A=> AH.BC=AB.AC
=> AH.52=20.48
=> AH.52=960
=> AH=240/13cm