Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Viết Thắng
Xem chi tiết
Nguyễn Viết Thắng
25 tháng 11 2016 lúc 19:52

casio 8 nha mn

Nguyễn Viết Thắng
25 tháng 11 2016 lúc 20:10

jup dj mn

Lê Văn Hải
Xem chi tiết
Lê Văn Hải
Xem chi tiết
Khải Nhi
Xem chi tiết
0o0_ Nguyễn Xuân Sáng _0...
15 tháng 6 2016 lúc 20:29

Có cần bạn bình luận ko vậy

Võ Đông Anh Tuấn
15 tháng 6 2016 lúc 20:26

Chị ơi em mới học lớp 7 nha chị       

Mai Chi
vin zoi i love you
15 tháng 6 2016 lúc 20:35

e moi lop 7 a

anh thái
Xem chi tiết
Tuấn
4 tháng 12 2016 lúc 21:53

bài này cơ bản của casio mà :|
tính u2 u3 gán thôi

anh thái
4 tháng 12 2016 lúc 21:55

cho tớ công thúc đi bạn ơi

Tuấn
4 tháng 12 2016 lúc 22:19

=='
đề cho còn gì
u2=u0.u1+1
u3=u2.u1+1

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 11 2017 lúc 1:52

Chọn A

Phương pháp: Tìm công thức số hạng tổng quát

Cách giải: Ta có:

u ( 1 ) = 1

u ( 2 ) = u ( 1 ) + u ( 1 ) = 2 u ( 1 ) + 1

u ( 3 ) = u ( 2 ) + u ( 1 ) = 3 u ( 1 ) + 1 + 2

u ( 4 ) = u ( 3 ) + u ( 1 ) = 4 u ( 1 ) + 1 + 2 + 3

. . .

u ( 2017 ) = u ( 2016 ) + u ( 1 ) = 2017 u ( 1 ) + 1 + 2 + 3 . . . + 2016

⇒ u ( 2017 ) = 1 + 2 + 3 . . . + 2016 + 2017 = 2035153

Khải Nhi
Xem chi tiết
Đinh Thùy Linh
26 tháng 6 2016 lúc 1:58

a) Giả sử đa thức f(x) sau khi lũy thừa bậc 2012 viết ra dưới dạng tổng quát:

\(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_2x^2+a_1x+a_0\)

Thì: \(f\left(1\right)=a_n+a_{n-1}+a_{n-2}+...+a_2+a_1+a_0=\left(1^2+3\cdot1-1\right)^{2012}=3^{2012}\)(1)

Hay TỔNG của tổng hệ số các hạng tử chứa lũy thừa bậc chẵn và tổng hệ số các hạng tử chứa lũy thừa bậc lẻ là 32012

Và: \(f\left(-1\right)=a_0-a_1+a_2-a_3+...=\left(\left(-1\right)^2+3\left(-1\right)-1\right)^{2012}=\left(-3\right)^{2012}=3^{2012}\)(2)

Hay HIỆU của tổng hệ số các hạng tử chứa lũy thừa bậc chẵn và tổng hệ số các hạng tử chứa lũy thừa bậc lẻ là 32012

Vậy, tổng các hệ số của hạng tử chứa lũy thừa bậc chẵn của x là: 1/2(TỔNG + HIỆU) = 32012.

Hán Bình Nguyên
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
TRẦN ĐỨC VINH
5 tháng 8 2017 lúc 9:54

Dãy số Un được gọi là dãy số cách đều khi : Un+1 - Un = d    (Hằng số - Không phụ thuộc vào n) Nếu d.> 0 thì dãy số gọi là dãy số tăng, nếu d< 0 thì dãy số là dãy giảm.

Dãy số mà Un = n2 + n  với \(\forall n\in N,n\ge1\).Ta xét hiệu Un+1 - Un = (n +1)2 + (n + 1) - (n2 + n)  = 2n + 2  Không phải là hằng số (Vì hiệu này còn chứa n) Vậy dãy số đã cho không phải là dãy số cách đều. 

Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2021 lúc 22:30

Đề không cho sẵn dãy tăng à? Vậy phải chứng minh nó tăng trước

\(u_{n+1}=\dfrac{u_n^2+2018u_n+1}{2020}\)

\(u_{n+1}-u_n=\dfrac{u_n^2+2018u_n+1}{2020}-u_n=\dfrac{\left(u_n-1\right)^2}{2020}\ge0\) \(\Rightarrow\) dãy tăng và không bị chặn trên \(\Rightarrow lim\left(u_n\right)=+\infty\)

\(\Rightarrow2020u_{n+1}=u_n^2+2018u_n+1\)

\(\Leftrightarrow2020u_{n+1}-2020=u_n^2+2018u_n-2019\)

\(\Leftrightarrow2020\left(u_{n+1}-1\right)=\left(u_n+2019\right)\left(u_n-1\right)\)

\(\Rightarrow\dfrac{1}{2020\left(u_{n+1}-1\right)}=\dfrac{1}{\left(u_n+2019\right)\left(u_n-1\right)}=\dfrac{1}{2020}\left(\dfrac{1}{u_n-1}-\dfrac{1}{u_n+2019}\right)\)

\(\Rightarrow\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Thế n=1;2;...;n ta được:

\(\dfrac{1}{u_1+2019}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)

\(\dfrac{1}{u_2+2019}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)

...

\(\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Cộng vế: \(S_n=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}=\dfrac{1}{2018}-\dfrac{1}{u_{n+1}-1}\)

\(\Rightarrow\lim\left(S_n\right)=\dfrac{1}{2018}-\dfrac{1}{\infty}=\dfrac{1}{2018}\)