Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 11 2017 lúc 10:17

Chọn C

Số cách xếp 6 bạn vào 6 chỗ ngồi là hoán vị của 6. Nên có 6!=720 cách xếp

Kimian Hajan Ruventaren
Xem chi tiết
nguyễn thị hương giang
5 tháng 10 2021 lúc 21:32

a) Có 2 cách xếp.

    Bạn A có 6! cách.

    Bạn B có 6! cách.

    Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.

b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.

    Chọn 1 học sinh B đối diện A có 6 cách.

    Cứ chọn liên tục như vậy ta được:

     \(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)

   cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường         nhau.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 9 2019 lúc 6:56

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 2 2018 lúc 18:20

Đáp án C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2017 lúc 3:44

Đáp án C

Số cách sắp xếp 6 học sinh vào một bàn dài có 10 chỗ ngồi là số chỉnh hợp chập 6 của 10 phần tử. Vậy số cách sắp xếp là: A 10 6  

Lê Kiều Nhiên
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 1 2022 lúc 22:28

Xếp 6 học sinh trường A vào 1 dãy ghế: 6! cách

Xếp 6 học sinh trường B vào dãy còn lại: 6! cách

Lúc này hai học sinh đối diện luôn khác trường, có 6 cặp như vậy, mỗi cặp có 2 cách hoán vị nên có \(2^6\) cách hoán vị 

Tổng cộng: \(6!.6!.2^6\) cách xếp thỏa mãn

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 11 2019 lúc 16:22

Chọn A

Đánh số ba bàn tròn có số chỗ ngồi lần lượt là 6, 7, 8 là bàn 1, bàn 2, bàn 3.

+) Xét phép thử: “Xếp ngẫu nhiên 21 học sinh vào ba bàn tròn 1, 2, 3 nói trên”.

Chọn 6 học sinh trong số 21 học sinh và xếp vào bàn 1 có  cách.

Chọn 7 học sinh trong số 15 học sinh còn lại và xếp vào bàn 2 có  cách.

Xếp 8 học sinh còn lại vào bàn 3 có 7! cách.

Suy ra số phần tử của không gian mẫu là 

+) Gọi A là biến cố: “ Hai bạn Thêm và Quý luôn ngồi cạnh nhau ”.

Trường hợp 1: Hai bạn Thêm và Quý ngồi bàn 1.

Chọn 4 học sinh từ 19 học sinh còn lại có  C 19 4  cách.

Xếp 4 học sinh vừa chọn và hai bạn Thêm, Quý vào bàn 1 có 4!.2! cách.

Chọn 7 học sinh từ 15  học sinh còn lại và xếp vào bàn 2 có  cách.

Xếp 8 học sinh còn lại vào bàn 3 có 7! cách.

Số cách xếp thỏa mãn trường hợp 1 là: 

Trường hợp 2: Hai bạn Thêm và Quý ngồi bàn 2.

Tương tự như trên, ta có số cách xếp thỏa mãn trường hợp 2 là 

Trường hợp 3: Hai bạn Thêm và Quý ngồi bàn 3.

Tương tự như trên, ta có số cách xếp thỏa mãn trường hợp 3 là: 

=  C 19 4 . 4 ! . 2 ! . C 1 7 . 6 ! . 7 !   +   C 19 5 . 5 ! . 2 ! . C 14 6 . 5 ! . 7 !   +   C 19 6 . 6 ! . 2 ! . C 13 6 . 5 ! . 6 !     C 21 6 . 5 ! . C 15 7 . 6 ! . 7 ! =  1 10

nguyễn hoàng lê thi
Xem chi tiết
Hoàng Tử Hà
27 tháng 12 2020 lúc 0:07

Eo ơi, đừng!! Tách ra đi bạn ơi, để thế này khủng bố mắt người đọc quá :(

Mà hình như mấy bài này có trong tập đề của thầy tui gởi nè :v

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 1 2020 lúc 16:58

Đáp án là A

Vì có 5 bạn học sinh

⇒ nên số cách cho bạn Chi ngồi chính giữa là:

1 cách.

Bốn bạn còn lại xếp vào bốn ghế

⇒ chính là hoán vị của 4 phần tử nên có 4! cách.

Vậy có  1 . 4 ! = 24 cách