Phương trình (2m-7)x-3=x-3 có vô số nghiệm x khi m=
phương trình \(\left(2m-7\right)x-3=x-3\) có vô số nghiệm khi m=.......
(2m-7)x-3=x-3
(2m-7)(x-3)-(x-3)=0
(x-3)(2m-7-1)=0
=)2m-7-1=0
2m-8=0
2m=8
=>m=4
đúng thì tick nha
1: mx+y=2m+2 và x+my=11
Khi m=-3 thì hệ sẽ là:
-3x+y=-6+2=-4 và x-3y=11
=>-3x+y=-4 và 3x-9y=33
=>-8y=29 và 3x-y=4
=>y=-29/8 và 3x=y+4=3/8
=>x=1/8 và y=-29/8
2: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{m}{1}< >\dfrac{1}{m}\)
=>m^2<>1
=>m<>1 và m<>-1
Để hệ vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{2m+2}{11}\)
=>(m=1 hoặc m=-1) và (11m=2m+2)
=>\(m\in\varnothing\)
Để hệ vô nghiệm thì m/1=1/m<>(2m+2)/11
=>m=1 hoặc m=-1
Phương trình (2m-7)x-3=mx-3 vô số nghiệm thì m=?
Lời giải:
$(2m-7)x-3=mx-3$
$\Leftrightarrow (2m-7)x-mx=0$
$\Leftrightarrow (2m-7-m)x=0$
$\Leftrightarrow (m-7)x=0$
Để PT này có vô số nguyên thì $m-7=0$
$\Leftrightarrow m=7$.
Phương trình : ( 2m-7)x -3 = mx-3 vô số nghiệm thì m bằng bao nhiêu ?
Ta có :\(\left(2m-7\right)x-3=mx-3\Leftrightarrow\left(2m-7\right)x-mx=-3+3\Leftrightarrow\left(2m-7-m\right)x=0\Leftrightarrow\left(m-7\right)x=0\)Để pt có vô số nghiệm thì pt phải có dạng 0x=0.
Suy ra:\(m-7=0\Leftrightarrow m=7\)
Vậy để pt có vsn thì m=7
Phương trình (2m - 7)x - 3 = mx - 3 vô số nghiệm thì m =?
(Ghi cách giài rõ ràng nhé)
(2m-7)x-mx=0
(2m-7-m)x=0
2m-7-m=0
m=7
thì pt vô nghiệm
Tìm m để :
a. Phương trình \(x^2-\left(2m+1\right)x+m^2-3=0\) có nghiệm kép
b. Phương trình \(x^2-3mx+m-2=0\) vô nghiệm
c. Phương trình \(x^2-2\left(m-1\right)x+m^2=0\) có nghiệm
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2
cho phương trình (m2-9)x=m2-2m-3(m là tham số)
a. tìm m để phương trình có một nghiệm duy nhất. tìm nghiệm đó.
b. tìm m để phương trình vô nghiệm
c. tìm m để phương trình vô số nghiệm.
Phương trình (có tham số m) m(x + m) = 3(x + m) có vô số nghiệm khi
A. m = 0
B. m = 3
C. m ≠ 0
D. m ≠ 3
Ta có:
m x + m = 3 x + m ⇔ m x + m 2 = 3 x + 3 m ⇔ m - 3 x = 3 m - m 2
Để phương trình đã cho có vô số nghiệm khi và chỉ khi:
m - 3 = 0 3 m - m 2 = 0 ⇔ m = 3 [ m = 0 ⇔ m = 3 m = 3