Giải phương trình: |-2x| = 4x + 8
giải phương trình: (2x-3)^2 = 4x^2-8
\((2x-3)^{2}=(4x)^2-8 =(4x)^{2}-12x+9=(4x)^{2}-8 =(4x)^{2}-12x+9-(4x)^{2}+8=0 =12x+17=0 =12x=-17 =x=\dfrac{-1}{12}\)
`(2x-3)^2 = 4x^2-8`
`<=> 4x^2 - 12x + 9 = 4x^2-8`
`<=> 4x^2 - 12x + 9-4x^2 +8=0`
`<=> -12x + 17=0`
`<=>-12x=-17`
`<=> x= 17/12`
vậy phương trình có nghiệm \(S=\left\{\dfrac{17}{12}\right\}\)
\(\left(2x-3\right)^2=4x^2-8\)
\(\Leftrightarrow4x^2-12x+9=4x^2-8\)
\(\Leftrightarrow4x^2-12x+9-4x^2+8=0\)
\(\Leftrightarrow17-12x=0\)
\(\Leftrightarrow12x=17\)
\(\Leftrightarrow x=\dfrac{17}{12}\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{\dfrac{17}{12}\right\}\)
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
giải bất phương trình
1)2x+3<0
2)3x-8>4x-12
3)3x-2>4x+3
giải các phương trình sau
a) 4x+8=3x-15
b) x+2x−2−1x=2x(x−2)
a: =>x=-23
b: (x+2)/(x-2)-1/x=2/x(x-2)
=>x^2+2x-x+2=2
=>x^2+x=0
=>x=0(loại) hoặc x=-1(nhận)
giải phương trình |x-2|+|2x-5|+|4-4x|=8
3x^3+2x^2+2x+3=8
(x^2-4x)^2+2(x^2-4x)^3-8=0
Giải hộ tớ cái phương trình
1)3(x^3+1) + 2x(x+1)=8
suy ra : 3(x+1)(x^2 +x+1) + 2x(x+1) =8
suy ra : (x+1) ( 3( x^2+x+1) +2x) -8 =0
suy ra : (x+1) ( 3x^2 +3x+3+2x) -8 =0
mk ko bt nữa
Giải các phương trình sau bằng cách đưa về phương trình tích
a) 2x(x-5)+4(x-5)=0
b) 3x-15=2x(x-5)
c) (2x+1)(3x-2)=(5x-8)(2x+1)
d) (4x^2-1+(2x+1)(3x-5)
\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{5;-2\right\}\)
\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)
\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)
Câu d xem lại đề
Giải các phương trình sau:
a) 3 x + 1 − 2 x + 2 = 4 x + 5 x 2 + 3 x + 2 ;
b) 2 x 2 + x + 6 x 3 − 8 + 2 2 − x = 3 x 2 + 2 x + 4 .
Bài 7: Giải phương trình : a)( x- 2x + 3 ) ( 2x - x+6 ) =18
b) 3x3 + 6x2 –4x = 0
c) 3x2 – 5x = 0
d) – 2x2 + 8 = 0
a: \(\Leftrightarrow\left(-x+3\right)\left(x+6\right)=18\)
\(\Leftrightarrow-x^2-6x+3x+18-18=0\)
\(\Leftrightarrow-x\left(x+3\right)=0\)
=>x=0 hoặc x=-3
b: \(\Leftrightarrow x\left(3x^2+6x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2x-\dfrac{4}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{\sqrt{21}}{3}-1;\dfrac{-\sqrt{21}}{3}-1\right\}\)
c: =>x(3x-5)=0
=>x=0 hoặc x=5/3
d: =>(x-2)(x+2)=0
=>x=2 hoặc x=-2