Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 22:50

Tọa độ giao điểm là:

2x+5m-1=4-3x và y=4-3x

=>5x=4+1-5m và y=-3x+4

=>x=-m+1 và y=-3*(-m+1)+4=3m-3+4=3m+1

x-2y<6

=>-m+1-6m-3<6

=>-7m-2<6

=>-7m<8

=>m>-8/7

Thầy Tùng Dương
Xem chi tiết
Lê MHạnh
Xem chi tiết
Mai Linh
Xem chi tiết
Akai Haruma
13 tháng 2 2020 lúc 16:35

Lời giải:

Do $(d_1),(d_2)$ cắt nhau tại trục hoành nên tung độ bằng $0$. Gọi giao điểm của $(d_1); (d_2)$ là $(a,0)$. Ta có:

\(\left\{\begin{matrix} a+0=-1\\ ma+0=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-1\\ ma=1\end{matrix}\right.\Rightarrow m(-1)=1\Rightarrow m=-1\)

Vậy.........

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 6 2019 lúc 2:48

Chọn A.

Gọi ∆ là đường thẳng cần tìm

Đường thẳng d có vecto chỉ phương  a d → = 0 ; 1 ; 1

Ta có A(2;3;3); B(2;2;2)

∆ đi qua điểm A(2;3;3) và có vectơ chỉ phương 

Vậy phương trình của ∆ là

nanako
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 8 2019 lúc 4:34

Chọn A.

Ta có A(2;3;3); B(2;2;2)

Δ đi qua điểm A(2;3;3) và có vectơ chỉ phương  A B → = 0 ; - 1 ; 1

Vậy phương trình của ∆ là x = 2 y = 3 - t z = 3 - t

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 11 2018 lúc 18:27
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 5 2018 lúc 16:26

Chọn C.

*) Gọi A = d1 ∩ (α)

A ∈ d1 ⇒ A(2-a;1+3a;1+2a)

Mà điểm A thuộc mp(α) nên thay tọa độ điểm A vào phương trình mặt phẳng ta được

(2 - a) + 2(1 + 3a) – 3(1 + 2a) – 2= 0

2 – a + 2 + 6a – 3 – 6a – 2 = 0

⇒ a = -1 ⇒ A(3;-2;-1)

*) Gọi B = d2 ∩ (α)

B ∈ d2 ⇒ B(1-3b;-2+b;-1-b)

Mà điểm B thuộc mp(α) nên thay tọa độ điểm B vào phương trình mặt phẳng ta được:

(1 - 3b) + 2(-2 + b) - 3(-1 - b) - 2 = 0

1- 3b – 4 + 2b + 3 + 3b - 2 = 0

⇔ 2b - 2 = 0 ⇔ b = 1 ⇒ B(-2;-1;-2)

*) Đường thẳng d đi qua điểm A(3;-2;-1) và có vectơ chỉ phương  

Vậy phương trình chính tắc của d là  x - 3 - 5 = y + 2 1 = z + 1 - 1

Ngọc Ánh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 5 2019 lúc 19:22

Do \(M\in d_3\) \(\Rightarrow M\left(2a;a\right)\)

\(\frac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=2\frac{\left|2a-a-4\right|}{\sqrt{1^2+\left(-1\right)^2}}\Leftrightarrow\left|3a+3\right|=2\left|a-4\right|\)

\(\Leftrightarrow\left(3a+3\right)^2=4\left(a-4\right)^2\Leftrightarrow9a^2+18a+9=4a^2-32a+64\)

\(\Leftrightarrow5a^2+50a-55=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)