Cho mặt nón tròn xoay đỉnh O có góc ở đỉnh bằng 60 ° . Một mặt phẳng (P) vuông góc với trục của mặt nón tại H, biết OH = a. Khi đó, (P) cắt mặt nón theo đường tròn có bán kính bằng:
A. a 2 3
B. a 2 2
C. a 3 2
D. a 3 3
Cho mặt nón tròn xoay đỉnh O có góc ở đỉnh bằng 60 ∘ . Một mặt phẳng (P) vuông góc với trục của mặt nón tại H, biết OH = a. Khi đó, (P) cắt mặt nón theo đường tròn có bán kính bằng:
Cắt hình nón đỉnh I bởi một mặt phẳng đi qua trục hình nón ta được một tam giác vuông cân có cạnh huyền bằng a 2 ; BC là dây cung của đường tròn đáy hình nón sao cho mặt phẳng (IBC) tạo với mặt phẳng chứa đáy hình nón một góc 60 ° . Tính theo a diện tích S của tam giác IBC.
A. S = a 2 2 3
B. S = 2 a 2 3
C. S = a 2 3
D. S = a 2 2 6
Cho S : x 2 + y - 1 2 + z + 1 2 = 8 và A 2 ; 3 ; - 1 . Xét mặt nón tròn xoay đỉnh A trục là IA( I là tâm mặt phẳng (S)) với góc ở đỉnh bằng 120 0 , đường tròn đáy hình nón thuộc mặt cầu. Viết phương trình mặt phẳng (P) chứa đường tròn đáy hình nón.
Cắt mặt xung quanh của một hình nón tròn xoay dọc theo một đường sinh rồi trải ra trên mặt phẳng ta được một nửa hình tròn bán kính R. Hỏi hình nón đó có bán kính r của đường tròn đáy và góc ở đỉnh của hình nón bằng bao nhiêu ?
Cắt mặt xung quanh của một hình nón tròn xoay dọc theo một đường sinh rồi trải ra trên mặt phẳng ta được một nửa hình tròn bán kính R ⇒ đường sinh có độ dài bằng R và chu vi đường tròn đáy bằng nửa chu vi đường tròn bán kính R
Cắt hình nón (N) đỉnh S cho trước bởi mặt phẳng qua trục của nó, ta được một tam giác vuông cân có cạnh huyền bằng 2 a 2 . Biết BC là một dây cung đường tròn của đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng đáy của hình nón một góc 60 ° . Tính diện tích tam giác SBC.
Cho hình nón N 1 đỉnh S đáy là đường tròn C(O;R), đường cao SO=40cm. Người ta cắt nón bằng mặt phẳng vuông góc với trục để được nón nhỏ N 2 có đỉnh S và đáy là đường tròn C'(O';R'). Biết rằng tỷ số thể tích V N 2 V N 1 = 1 8 . Tính độ dài đường cao nón N 2 .
Cho hình nón tròn xoay có đường cao h = 5 bán kính đáy r = 3. Mặt phẳng (P) qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 4. Gọi O là tâm của hình tròn đáy. Tính khoảng cách d từ điểm O đến mặt phẳng (P).
Cho hình nón tròn xoay có đường cao h = 5 , bán kính đáy r = 3. Mặt phẳng (P) qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 4. Gọi O là tâm của hình tròn đáy. Tính khoảng cách d từ điểm O đến mặt phẳng (P).
A. d = 5 2
B. d = 10
C. d = 5
D. d = 10 2
Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng a √2
Cho dây cung BC của đường tròn đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng chứa đáy hình nón góc 60 o .Tính diện tích tam giác SBC.