So sánh: 1 2 6 v à 6 1 2
Câu 1: Chứng minh:
\(31.82+125.48+21.43=125.67=1500\)
Câu 2: So sánh:
1,\(\sqrt{51}-\sqrt{5}v\text{à}\sqrt{20}-\sqrt{6}\)
2,\(\sqrt{2}+\sqrt{8}v\text{à}\sqrt{3}+3\)
3,\(\sqrt{37}-\sqrt{14}v\text{à}6-\sqrt{15}\)
4,\(\sqrt{5}+\sqrt{10}v\text{à}5,3\)
So sánh
\(a,2^{30}+3^{30}+4^{30}v\text{à}3^{20}+6^{20}+8^{20}\)
\(b,2^{30}+3^{30}+4^{30}v\text{à}3.24^{10}\)
\(c,2^0+2^1+2^2+...+2^{50}v\text{à}2^{51}\)
c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)
\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)
\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)
a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)
Mà \(8^{10}< 9^{10}\); \(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên
\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
b) Ta có: \(4^{30}=2^{30}.2^{30}=8^{10}.4^{15}\)
\(3.24^{10}=3.8^{10}.3^{10}=3^{11}.8^{10}\)
Vì \(4^{15}>3^{11}\) nên \(8^{10}.4^{15}>3^{11}.8^{10}\)
hay \(2^{30}+3^{30}+4^{30}>3.24^{10}\)
a,tính tổng : \(S=\dfrac{27+4500+135+550+2}{2+4+6+...+14+16+18}\)
b, So sánh : \(A=\dfrac{2006^{2006}+1}{2006^{2007}+1}v\text{à }B=\dfrac{2006^{2005}+1}{2006^{2006}+1}\)
- Mình dùng cách lớp 8 để làm câu b được không :)?
- Tham khảo câu b:
https://olm.vn/hoi-dap/tim-kiem?q=+++++++++++A=2006%5E2005+1/2006%5E2006+1B=2006%5E2006+1/2006%5E2007+1so+s%C3%A1nh+A+v%C3%A0+B&id=520258
so sánh\(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}v\text{à}\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)
\(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\sqrt[3]{\left(1-\sqrt{3}\right)\left(\sqrt{3}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{3}\right)^3}\)=1-\(\sqrt{3}\)
\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}=\sqrt[3]{\left(1-\sqrt{5}\right)\left(\sqrt{5}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=1-\(\sqrt{5}\)
Ta thấy \(\sqrt{5}>\sqrt{3}\)nên 1-\(\sqrt{3}\)>\(1-\sqrt{5}\)
Vậy \(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}\)>\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)
so sánh: a/ 4 và\(1+2\sqrt{2}\) b/4 và\(2\sqrt{6}-1\) c/\(-3\sqrt{3}v\text{à}-2\sqrt{7}\)
a)
Có: \(1+2\sqrt{2}=1+\sqrt{8}< 1+\sqrt{9}=1+3=4\)
Vậy \(4>1+2\sqrt{2}\)
b) Có: \(2\sqrt{6}-1=\sqrt{24}-1< \sqrt{25}-1=5-1=4\)
Vậy \(4>2\sqrt{6}-1\)
c) Có: \(3\sqrt{3}=\sqrt{27}< \sqrt{28}=2\sqrt{7}\)
=> \(3\sqrt{3}< 2\sqrt{7}\)
=> \(-3\sqrt{3}>-2\sqrt{7}\)
so sánh
a, 814 và 276
2300 và 3200
S= 1+2+22+23+.......+29 và 5.28
1. so sánh
\(2^{27}v\text{à}3^{18}\)
\(3^{21}v\text{à}2^{31}\)
\(2^{27}=2^{3.9}=8^9\)
\(3^{18}=3^{2.9}=9^9\)
Vì \(9^9>8^9\Rightarrow3^{18}>2^{27}\)
MK chỉ làm đc câu a) thui nha :
2^27 = 2^ 3.9 = 8^9
3^18 = 3^2.9=9^9
Vì 9^9 > 8^9 => 2^27 < 2 ^18
So sánh giùm mik nha.
a) \(\frac{3}{-4}v\text{à}\frac{-1}{-4}\)
b) \(\frac{15}{17}v\text{à}\frac{25}{27}\)
c) \(\frac{-9}{6}v\text{à}\frac{6}{-4}\)
d) \(\frac{2000}{2001}+\frac{2001}{2002}v\text{à}\frac{2000+2001}{2001+2002}\)
Lm đc bài nào thì giải giúp mik vs nha.
a) \(\frac{3}{-4}=\frac{-3}{4};\frac{-1}{-4}=\frac{1}{4}\)
Vì - 3 < 1 nên \(\frac{-3}{4}< \frac{1}{4}\)
hay \(\frac{3}{-4}< \frac{-1}{-4}\)
Quy đồng mẫu ta được:
15/17=15.27/17.27=405/459
25/27=25.17/27.27=425/459
⇒405/459<425/459⇒15/17<25/27
c) quy đồng
-9/6=-36/24
6/-4=36/-24
tương đương -36/24=-36/24
suy ra -9/6=6/-4
so sánh \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}v\text{à}\frac{1}{2^2\cdot3\cdot5^2\cdot7}\)
Đặt A = \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}\)
=> A < \(\frac{1}{100.101}+\frac{1}{101.102}+....+\frac{1}{204.205}\)
=> A < \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{204}-\frac{1}{205}\)
=> A < \(\frac{1}{100}-\frac{1}{205}\)
=> A < \(\frac{1}{2100}\)
Đặt B = \(\frac{1}{2^2.3.5^2.7}=\frac{1}{2100}\)
=> A < B
=> \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}
giỏi lắm mình cũng biết làm chỉ hỏi chơi thôi
ủng hộ
So sánh :
a,\(\frac{7}{23}v\text{à}\frac{11}{28}\)
b,\(\frac{2014}{2015}+\frac{2015}{2016}v\text{à}\frac{2014+2015}{2015+2016}\)
c,A=\(\frac{2^{10}+1}{2^{11}+1}v\text{à B=\frac{2^{11}+1}{2^{12}+1}}\)
a)7/23<11/28
b)2014/2015+2015/2016>2014+2015/2015+2016
c) A= gì vậy