Số gia của hàm số y = 2 x 2 + 2 tại điểm x0= 0 ứng với số gia ∆x=1 bằng:
A. 2
B. 0
C. -2
D. -8
Tính số gia của hàm số y= \(\dfrac{x^2}{2}\) tại điểm x0 =-1 ứng với số gia Δx
Số gia của hàm số y = x 2 − 1 tại điểm x 0 = 2 ứng với số gia Δ x = 0 , 1 bằng bao nhiêu?
A.-0, 01
B. 0,41
C.0,99
D.11,1
Δ y = f x 0 + Δ x − f x 0 = f 2 + 0 , 1 − f 2 = 2 , 1 2 − 1 − ( 2 2 − 1 ) = 0 , 41
Chọn đáp án B
Cho hàm số y = x 3 – 2 x 2 + 2 . Tính vi phân của hàm số tại điểm x 0 = 1 , ứng với số gia ∆ x= 0,02.
A. -0,02
B. 0,01
C. 0,4
D. -0,06
Ta có y ' = 3 x 2 − 4 x .
Do đó vi phân của hàm số tại điểm x 0 = 1 , ứng với số gia ∆x = 0,02 là: d f ( 1 ) = f ' ( 1 ) . Δ x = 3.1 2 − 4.1 .0 , 02 = − 0 , 02 .
Chọn đáp án A.
Tính số gia của hàm số y= x3 +x2 +1 tại điểm x0 ứng với số gia △x =1
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ ( a ; b ) . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' ( x 0 ) = 0 .
(2) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = f ' ' ( x 0 ) = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f ( x ) .
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
(4) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = 0 , f ' ' ( x 0 ) > 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
A. 1
B. 2
C. 0
D. 3
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ a ; b . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau ?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' x 0 = 0
(2) Nếu hàm số y = f(x) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' x 0 = f " x 0 = 0 thì điểm x 0 không là điểm cực trị của hàm số y = f x
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f(x)
(4) Nếu hàm số y = f(x) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' x 0 = 0 , f " x 0 > 0 thì điểm x 0 là điểm cực đại của hàm số y = f(x)
A. 1
B. 2
C. 0
D. 3
Số gia của hàm số f(x) = x 3 ứng với x 0 = 2 và ∆ x = 1 bằng bao nhiêu?
A. -19
B. 7
C. 19
D. -7
Đáp án C
Gọi Δ x là số gia của đối số; Δ y là số gia của hàm số. Ta có:
Δ y = f ( x 0 + Δ x ) − f ( x 0 ) = f ( 2 + 1 ) − f ( 2 ) = f ( 3 ) − f ( 2 ) = 3 3 − 2 3 = 19
Tính dạo hàm của các hàm số bằng định nghĩa Y=3x^2+2 tại x0=0 Y= x^3+2x-1 tại x0=0
Số gia của hàm số f ( x ) = x 3 ứng với x 0 = 2 và Δx = 1 bằng bao nhiêu?
A.-19
B. 7
C. 19
D. -7