Tam giác ABC có góc C > góc B. Kẻ AH vuông góc với BC (H thuộc BC) . So sánh các độ dài HB va HC.
Cho tam giác ABC có góc B < góc C. Kẻ Ah vuông góc với BC ( H thuộc BC ) . So sánh độ dài HB và HC
GIÚP MÌNH VỚI MAI ĐI HỌC RỒi
Xét tam giác ABC có góc B < góc C
=> AC < AB ( theo quan hệ cạnh và góc đối diện trong 1 tam giác )
=> HC < HB ( theo quan hệ đường xiên và hình chiếu )
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng
minh tam giác HDE cân.
d, So sánh HD và HC.
Xét tam giác ABH và tam giác ACH
AB=AC(GT)
^AHB=^AHC=90o
^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác ABH = tam giác ACH
=> HB=HC ( 2c tứ)
có HB+HC=BC
mà BC=8 cm
HB=HC
=> HB=HC=4cm
Xét tam giác ABH : ^H=90o
=> AB2+AH2+BH2(đ/lý pythagoras)
thay số ta có :
52=AH2+42
25-16=AH2
9=AH2
3=AH
c)Xét tam giác BDH và tam giác ECH
^BDH= ^ HEC =90o
BH=CH
^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác BDH = tam giác ECH
=> DH=EH
=> HDE CÂN TẠI H (Đ/N)
d) qua tia đối của DH ; kẻ HK sao cho HK= DH
CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền) => HK > HC
mà HD=HK
=> HD>HC
cho tam giác ABC cân có AB = AC = 5cm, BC =8cm. kẻ AH vuông góc với BC(H thuộc BC)
a, chứng minh HB=HC
b, tính độ dài AH
c, kẻ HD vuông góc với AB( D thuộc AB), kẻ HE vuông góc với AC( E thuộc AC). CHỨNG MINH TAM GIÁC HDE cân
d, so sánh HD và HC
a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:
AH: chung
AB=AC (gt)
=>Tam giác ABH=tam giác ACH (cạnh huyền-cạnh góc vuông)
=>HB=HC (2 cạnh tương ứng)
b)Vì HB=HC (câu a) => HB=HC=BC:2=8:2=4 (cm)
Xét tam giác ABH vuông tại H có: AB2 = AH2 + BH2 (định lý Py-ta-go)
52 = AH2 + 42
AH2 = 52 - 42 = 25-16=9
AH=\(\sqrt{9}=3\)
c) Vì tam giác ABH=tam giác ACH (câu a) => góc BAH=góc CAH (2 góc tương ứng)
Xét tam giác ADH vuông tại D và tam giác AEH vuông tại E có:
AH: chung
góc BAH=góc CAH (cmt)
=> Tam giác ADH=tam giác AEH (cạnh huyền-góc nhọn)
=>HD=HE (2 cạnh tương ứng)
=>tam giác DHE cân tại H
d) Tam giác EHC vuông tại E có HC là cạnh huyền =>HC là cạnh lớn nhất trong tam giác EHC hay HC>HE
Mà HE=HD (cmt) => HC>HD
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H
thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc
AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
a, xét tam giác AHB và tam giác AHC có : AH chung
AB = AC do tam giác ABC cân tại A (gt)
^AHB = ^AHC = 90
=> tam giác AHB = tam giác AHC (ch-cgv)
=> HB = HC (Đn)
b, HB = HC (câu a)
HB + HC = BC
BC = 8 cm (gt)
=> HB = 4
Xét tam giác AHB vuông tại H => AH^2 + HB^2 = AB^2 (Pytago)
AB = 5cm (gt)
=> AH^2 = 5^2 - 4^2
=> AH = 3 do AH > 0
c, xét tam giác BHD và tam giác CHE có : HB = HC (câu a)
^BDH = ^CEH = 90
^ABC = ^ACB do tam giác ABC cân tại A (gt)
=> tam giác BHD = tam giác CHE (ch-gn)
=> HD = HE (đn)
=> tam giác HDE cân tại H (đn)
b, tam giác BHD vuông tại D
=> DH < HB
HB = HC (câu a)
=> HD < HC
, cho tam giác ABC cân có AB=AC=5cm, BC=8cm. kẻ AH vuông góc BC(H thuộc BC)
a) chứng minh :HB=HC
b) tính độ dài AH
c) kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC)
d) so sánh HD và HC
Hình bạn tự vẽ nha !
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
c) Hình như bạn viết thiếu đề ròi
d) Mình bó tay :P
Cho tam giác ABC có góc C lớn hơn góc B kẻ AH vuông góc với BC so sánh các độ dài HB và HC
2.cho tam giác ABC có AB=AC=5CM, BC=8cm . Kẻ AH vuông góc với BC ( H thuộc BC ) a) chứng minh HB=HC và góc BAH = góc CAH. b) tính độ dài đoạn thẳng AH . c) kẻ HD vuông góc với AB tại D , kẻ HE vuông góc với AC tại E . chứng minh rằng tam giác HDE là tam giác cân
so sánh hd và hc
Câu 1: Cho △ABC có góc B = 50 độ.
a, So sánh các cạnh của △ABC
b, Kẻ AH vuông góc với BC tại H. So sánh độ dài cạnh HB và HC
Câu 2: Cho tam giác ABC nhọn, điểm D nằm giữa B và C sao cho AD không vuông góc với BC. Kẻ BH và CK vuông góc với đường thẳng AD tại H và K
a, So sánh BH + CK và AB + AC
b, So sánh BH + CK và BC
Nếu△ABC vuông tại B và D là trung điểm BC thì so sánh AH + Ak với 2. AB
a: BH<AB
CK<AC
=>BH+CK<AB+AC
b: BH<BD
CK<CD
=>BH+CD<BD+CD=BC
Cho tam giác abc cân có ab=ac=5cm, bc=8cm. Kẻ ah vuông góc với bc (h thuộc bc).
a, CM hb=hc
b, Tính độ đà ah
c, Kẻ hd vuông góc với ab (d thuộc ab) kẻ he vuông góc với ac (e thuộc ac). cm tam giác hde cân
d, so sánh hd và hc