chứng minh
a)số 3n+1 là bội của 10(n là số nguyên dương)CM 3n+4+1 là bội của 10
Cho n là số nguyên dương. Chứng minh rằng nếu 3n + 1 là bội của 10 thì 3n + 4 + 1 cũng là bội của 10. Giải tự luận giúp em.
cho3n+1 là bội của 10(với n là số nguyên dương) chứng tỏ rằng 3n+4+1 cũng là bội của 10
cho n là số nguyên dương, chứng minh rằng nếu 3n + 1 là bội của 10 thì 3n+4 +1 cũng là bội của 10
3n + 1 là bội của 10
=> 3n + 1 chia hết cho 10
mà 1 chia 10 dư 1
=> 3n chia 10 dư 9
- Xét 3n+4 + 1
= 3n.34 + 1
= 81.3n + 1
Có 81 chia 10 dư 1
3n chia 10 dư 9
=> 81.3n chia 10 dư 1.9
=> 81.3n chia 10 dư 9
mà 1 chia 10 dư 1
=> 81.3n + 1 chia hết cho 10
=> 3n+4 + 1 chia hết cho 10
=> 3n+4 + 1 là bội của 10
=> Đpcm
Nếu 3n +1 là bội của 10 thì 3n +1 có tận cùng là 0 => 3n có tận cùng là 9
Mà : 3n+4 +1 = 3n . 34 = .....9 . 81 + 1 = .....9 +1 = ......0
hay 3n+4 có tận cùng là 0 => 3n+4 là bội của 10
Vậy 3n+4 là bội của 10.
Cho 3^n +1 là bội của 10 ( với n là số nguyên dương ). Chứng tỏ rằng số : 3^n+4 +1 cũng là bội của 10
\(3^n+1⋮10\)
\(\Rightarrow3^n=\left(...9\right)\)
\(3^{n+4}=3^n.81=\left(..9\right).81=\left(...9\right)\Rightarrow3^{n+4}+1=\left(...0\right)⋮10\text{(đpcm)}\)
\(3^{n+1}\)là bội của 10
=>\(3^{n+1}⋮10\)10
mà 1 chia 10 dư 1
=>\(3^n\)chia 10 dư 9
- Xét \(3^{n+4}+1=3^n.3^4+1=81.3^n+1\)
Có 81 chia 10 dư 1
\(3^n\)chia 10 dư 9
\(\Rightarrow81.3^n\)chia 10 dư 1.9
mà 1 chia 10 dư 1
\(\Rightarrow81.3^n+1⋮10\) 1 chia hết cho 10
\(\Leftrightarrow3^{n+4}+1⋮10\)chia hết cho 10
\(\Rightarrow3^{n+4}+1\) là bội của 10
=> Đpcm
Tìm các số nguyên n
a, n+10 là bội của n-1
b,tìm 3n là bội của n-1
Giải nhanh giúp mik vs ak
a) n+10 là bội của n-1
=>n+10 chia hết cho n-1
=>n-1+11 chia hết cho n-1
=> 11 chia hết cho n-1
=>n-1 thuộc Ư(11)={1;11;-1;-11}
=>n thuộc {2;12;0;-10}
Vậy.....
b) 3n là bội của n-1
=>3n chia hết cho n-1
=>3(n-1)+3 chia hết cho n-1
=>3 chia hết cho n-1
.....
Còn lại bn tự lm nha
a,n +10 là bội của n- 1
\(\Rightarrow\)n +10 \(⋮\)n- 1
\(\Rightarrow\)n- 1 +11\(⋮\)n- 1
Mà n- 1\(⋮\)n- 1 nên 11 \(⋮\)n- 1
\(\Rightarrow\)n- 1 \(\in\)Ư(11) ={1;-1;-11;11}
\(\Rightarrow\)n- 1 \(\in\){1;-1;-11;11}
\(\Rightarrow\)n \(\in\){2;0;-10;12}
Vậy n \(\in\){2;0;-10;12}
b,3n là bội của n- 1
\(\Rightarrow\)3n\(⋮\)n- 1
\(\Rightarrow\)3(n-1)+3\(⋮\)n- 1
Mà 3(n-1)\(⋮\)n- 1 nên 3 \(⋮\)n- 1
\(\Rightarrow\)n- 1 \(\in\)Ư(3) ={1;-1;-3;3}
\(\Rightarrow\)n- 1 \(\in\){1;-1;-3;3}
\(\Rightarrow\)n \(\in\){2;0;-2;4}
Vậy n- 1 \(\in\){2;0;-2;4}
Bài 1 : Số \(3^n+1\)là bội của \(10\)( n là số nguyên dương )
Chứng minh rằng số :\(3^{n+4}+1\)là bội của 10 ( giải =2 cách )
Bài 1 :
CÁCH 1
Ta có : \(3^{n+4}+1=3^4.\left(3^n+1\right)-8\left(1\right)\)
Vì \(3^n+1\)và \(80\)đều là bội của 10 nên từ ( 1 ) ta suy ra \(3^{n+4}+1\)cũng là bội của 10
CÁCH 2:
\(3^n+1\)là bội của 10 nên \(3^n\)tận cùng bằng 9 ( 2 )
Ta có : \(3^{n+4}+1=3^n.3^4+1\)\(=3^n.81+1\left(3\right)\)
Từ \(\left(2\right),\left(3\right)\)suy ra \(3^{n+4}+1\)là một số tận cùng bằng 0
Vậy \(3^{n+4}+1\)cũng là bội của 10
Chúc bạn học tốt ( -_- )
Cách 1: ta có: 3n +1 là bội của 10
=> 3n +1 chia hết cho 10
mà các số chia hết cho 10 tận cùng 0
=> 3n chia hết cho 9
mà 3n+4 +1 = 3n.34 +1
=> 3n.34 chia hết cho 9
=> 3n .34 +1 chia hết cho 10
=> 3n+4 +1 chia hết cho 10
=> 3n+4 +1 là bội của 10 ( đpcm)
Cách 2: ta có: 3n+4 +1 = 3n.34 + 1 = 3n.81+ 81 - 80 = 81.( 3n +1) - 80
mà 3n+1 là bội của 10
=> 3n+1 chia hết cho 10
=> 81.(3n+1) chia hết cho 10
mà 80 chia hết cho 10
=> 81.(3n+1) - 80 chia hết cho 10
=> 3n+4+1 chia hết cho 10
=> 3n+4 +1 là bội của 10 (đpcm)
Tìm số nguyên n biết: a) – 5 là bội của n + 1
b) n là ước của 3n + 6
c) 2n + 5 là bội của n + 1
d) 3n + 1 chia hết cho n – 3
tìm số nguyên n biết 3n-10 là bội của n-2
Câu hỏi của ho khanh chau - Toán lớp 6 - Học toán với OnlineMath
bn có thể tham khảo ở đó nhé !
mak bạn bấm vào dòng chữ màu xanh nha
chúc các bn hok tốt ! :D
Bài 2 : a)Tìm các Bội lớn hơn -40 và nhỏ hơn 100 của 8
b)Tìm các Bội lớn hơn -35 và nhỏ hơn 10 của 5
Bài 3 : Tìm các số nguyên n để:
3n - 5 chia hết cho n-3
Bài 4 : Tìm sô nguyên x vừa là ước của -72 vừa là bội của 18
Bài 3:
\(\Rightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)