Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Hằng
Xem chi tiết
An Phú 8C Lưu
16 tháng 11 2021 lúc 9:46

undefined

Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 9:48

Vì ABCD là htc nên \(\widehat{A}=2\widehat{C}=2\widehat{D}\)

Mà AB//CD nên \(\widehat{A}+\widehat{D}=180^0\Rightarrow3\widehat{D}=180^0\Rightarrow\widehat{D}=60^0\Rightarrow\widehat{A}=120^0\)

Vì ABCD là htc nên \(\widehat{A}=\widehat{B}=120^0;\widehat{D}=\widehat{C}=60^0\)

Linh Trần
Xem chi tiết
Minh Ngọc
9 tháng 7 2021 lúc 19:13

Bafi1: Do AB // CD ( GT )

⇒ˆA+ˆC=180o

⇒2ˆC+ˆC=180o

⇒3ˆC=180o

⇒ˆC=60o

⇒ˆA=60o.2=120o 

Do ABCD là hình thang cân

⇒ˆC=ˆD

Mà ˆC=60o

⇒ˆD=60o

AB // CD ⇒ˆD+ˆB=180o

⇒ˆB=180o−60o=120o

Vậy ˆA=ˆB=120o;ˆC=ˆD=60o

Minh Ngọc
9 tháng 7 2021 lúc 19:25

Bài 2:

Ta có; AB//CD

\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)

^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)

\(\Rightarrow\)^A= \(135^O\)

\(\Rightarrow\)^D=\(45^o\)

\(\Rightarrow B=A=135^o\)

\(\Rightarrow C=D=45^o\)

Minh Ngọc
9 tháng 7 2021 lúc 19:36

 

Trần Thị Út Quỳnh
Xem chi tiết
Thảo
26 tháng 9 2018 lúc 21:31

\(\widehat{A}=\widehat{B}=120\)

\(\widehat{C}=\widehat{D}=60\)

Sắc màu
26 tháng 9 2018 lúc 21:33

Vì ABCD là hình thang cân

=> \(\hept{\begin{cases}\widehat{C}=\widehat{D}\\\widehat{B}=\widehat{A}\end{cases}}\)

Mà \(\widehat{A}=2\widehat{C}\)

=> \(\widehat{A}=2\widehat{D}\)

Vì AB // CD

=> \(\widehat{A}+\widehat{D}=180^o\)

Thay \(\widehat{A}=2\widehat{D}\)

=> \(3\widehat{D}=180^o\)

=> \(\widehat{D}=180^o:3=60^o\)

và \(\widehat{A}=2.\widehat{D}=2.60^o=120^o\)

Vì \(\widehat{C}=\widehat{D}\Rightarrow\widehat{C}=60^o\)

Vì \(\widehat{B}=\widehat{A}\Rightarrow\widehat{B}=120^o\)

Vậy \(\widehat{A}=120^o;\widehat{B}=120^o;\widehat{C}=60^o;\widehat{D}=60^o\)

Vũ Ngọc Hải Vân
Xem chi tiết
Athanasia Karrywang
26 tháng 8 2021 lúc 15:36

Do AB // CD ( GT )

⇒^A+^C=180o

⇒2^C+^C=180o

⇒3^C=180o

⇒^C=60o

⇒  ^A = 60o * 2 = 120o

Do ABCD là hình thang cân

⇒  ^C = ^D

Mà ^C = 60o

⇒   ^D = 60o

AB // CD ⇒ ^D +  ^B = 180o

⇒ˆB=180o − 60o = 120o

Vậy   ^A  = ^B  =  120o      ;      ^C= ^D = 60o

Khách vãng lai đã xóa
Athanasia Karrywang
26 tháng 8 2021 lúc 15:39

Xét 2 tam giác : Tam giác ADB và tam giác BCA có :

AB : Cạnh chung

^DAB=^CBA   (Tính chất của hình thang cân)   

AC  =  BD   ( Tính chất của hình thang cân)   

⇒    ΔADB = ΔBCA       ( c−g−c)

⇒   ^CAB   =  ^DBA    (2 góc tương ứng)

⇒   ^OAB  =  ^OBA

=> Tam giác OAB cân

=> OA = OB

=> Điều phải chứng minh

Khách vãng lai đã xóa
Chanhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 13:49

Bài 6: 

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)

Chanhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 13:25

Bài 3: 

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OD=OC

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 13:27

Bài 2: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK và HB=KC

Xét ΔABC có

\(\dfrac{AK}{AB}=\dfrac{AH}{HC}\)

Do đó: KH//BC

Xét tứ gác BKHC có KH//BC

nên BKHC là hình thang

mà KC=BH

nên BKHC là hình thang cân

Chanhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 12:54

Bài 2: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

Xét ΔABC có 

\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\)

Do đó: HK//BC

Xét tứ giác BCHK có HK//BC

nên BCHK là hình thang

mà HB=KC(ΔAHB=ΔAKC)

nên BCHK là hình thang cân

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 13:25

Bài 3: 

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OD=OC

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

Xuân Trà
Xem chi tiết
Xuân Trà
Xem chi tiết
Nguyễn Nam Cao
3 tháng 7 2015 lúc 8:08

Trong hình thang cân ABCD (AB//CD) đặt m là sđ góc D (m<180 độ ) thì:D=C=m và A=B=180 độ-m 
Tam giác ABD cân tại A =>^ABD=^ADB 
AB//CD tạo với cát tuyến BD 2 góc so le trong ^ABD=^CDB 
Suy ra ^ADB=^CDB,lại có tia DB nằm giữa 2 tia DA và DC nên tia DB là tia phân giác ^ADC=m độ 
Vậy ^ABD= (1/2).m 
Tam giác BCD cân tại D =>^DBC=^DCB=m độ 
Tia BD nằm giữa 2 tia BA,BC nên ^ABC=^ABD+^DBC=(1/2).m+m (độ) 
=(3/2).m (độ) 
Mà ^ABC=180-m (độ),nên (3/2).m(độ)=180-m(độ) 
hay 5/2.m=180 độ => m=360độ:5=72 độ 
và 180 độ-m=108 độ 
Trả lời : Trong hình thang cân ABCD kể trên,sđ 2 góc nhọn C và D là 72 độ,sđ 2 góc còn lại là 108 độ

Nguyễn Thị Chuyên
Xem chi tiết
Babi girl
2 tháng 9 2021 lúc 8:58

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Edogawa Conan
2 tháng 9 2021 lúc 9:01

Ta có: \(\widehat{A}+\widehat{D}=180^o\)

Mà \(\widehat{A}=3\widehat{D}\)

\(\Rightarrow\widehat{A}=135^o;\widehat{D}=45^o\)

Ta có:\(\widehat{A}=\widehat{B}\);\(\widehat{C}=\widehat{D}\)