Ba phân thức x 2 − x − 2 x 2 + x , x − 2 x và x 2 − 3 x + 2 x 2 − x có bằng nhau không ? Tại sao?
Ba phân thức sau có bằng nhau không?
\(\dfrac{x^2-2x-3}{x^2+x};\dfrac{x-3}{x};\dfrac{x^2-4x+3}{x^2-x}\)
\(\left\{{}\begin{matrix}\dfrac{x^2-2x-3}{x^2+x}=\dfrac{\left(x+1\right)\left(x-3\right)}{x\left(x+1\right)}=\dfrac{x-3}{x}\\\dfrac{x-3}{x}\\\dfrac{x^2-4x+3}{x^2-x}=\dfrac{\left(x-3\right)\left(x-1\right)}{x\left(x-1\right)}=\dfrac{x-3}{x}\end{matrix}\right.\)
Vậy \(\dfrac{x^2-2x-3}{x^2+x}=\dfrac{x-3}{x}=\dfrac{x^2-4x+3}{x^2-x}\)
\(ĐK:x\ne0;x\ne\pm1\\ \dfrac{x^2-2x-3}{x^2+x}=\dfrac{\left(x+1\right)\left(x-3\right)}{x\left(x+1\right)}=\dfrac{x-3}{x}\\ \dfrac{x^2-4x+3}{x^2-x}=\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(x-1\right)}=\dfrac{x-3}{x}\)
Do đó 3 phân thức trên bằng nhau
6. Biết rằng phương trình x 3 −3x 2 +3 = 0 có ba nghiệm phân biệt. Chứng minh rằng trong ba nghiệm này có hai nghiệm a,b thoả mãn ab+3 = a+2b.
7. Cho đa thức P(x) = 2x 4 −x 3 −5x 2 +5x−5. Gọi a,b, c là ba nghiệm phân biệt của đa thức Q(x) = x 3 −3x+1. Tính P(a).P(b).P(c).
8. Biết rằng phương trình P(x) = x 3 +3x 2 −1 có ba nghiệm phân biệt a < b < c. Chứng minh rằng c = a 2 +2a− 2,b = c 2 +2c−2,a = b 2 +2b−2.
Cho x, y, z \(\ne\)0 và \(\frac{y^2+z^2-x^2}{2yz}+\frac{z^2+x^2-y^2}{2xz}+\frac{x^2+y^2-z^2}{2xy}=1\). Chứng minh rằng trong ba phân thức đã cho có một phân thức bằng 1 và một phân thức bằng -1.
Quy đồng mẫu thức ba phân thức :
\(\dfrac{x}{x^2-2xy+y^2-z^2};\dfrac{y}{y^2-2yz+z^2-x^2};\dfrac{z}{z^2-2zx+x^2-y^2}\)
Ba phân thức sau có bằng nhau không ?
\(\dfrac{x^2-2x-3}{x^2+x};\dfrac{x-3}{x};\dfrac{x^2-4x+3}{x^2-x}\)
\(\text{Ta có : }\dfrac{x^2-2x-3}{x^2+x}\\ =\dfrac{x^2+x-3x-3}{x\left(x+1\right)}\\ =\dfrac{\left(x^2+x\right)-\left(3x+3\right)}{x\left(x+1\right)}\\ \\ =\dfrac{x\left(x+1\right)-3\left(x+1\right)}{x\left(x+1\right)}\\ \\ =\dfrac{\left(x+1\right)\left(x-3\right)}{x\left(x+1\right)}\\ \\ =\dfrac{x-3}{x}\text{ }\text{ }\text{ }\left(1\right)\)
\(\dfrac{x^2-4x+3}{x^2-x}\\ =\dfrac{x^2-x-3x+3}{x\left(x-1\right)}\\ \\ =\dfrac{\left(x^2-x\right)-\left(3x-3\right)}{x\left(x-1\right)}\\ \\ =\dfrac{x\left(x-1\right)-3\left(x-1\right)}{x\left(x-1\right)}\\ \\ =\dfrac{\left(x-3\right)\left(x-1\right)}{x\left(x-1\right)}\\ \\ =\dfrac{x-3}{x}\text{ }\text{ }\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra : \(\dfrac{x^2-2x-3}{x^2+x}=\dfrac{x-3}{x}=\dfrac{x^2-4x+3}{x^2-x}\)
Vậy 3 phân thức \(\dfrac{x^2-2x-3}{x^2+x};\dfrac{x-3}{x};\dfrac{x^2-4x+3}{x^2-x}\) bằng nhau
Giả sử :
\(\dfrac{x^2-2x-3}{x^2+x}=\dfrac{x-3}{x}=\dfrac{x^2-4x+3}{x^2-x}\)
\(\Leftrightarrow\) \(\dfrac{\left(x+1\right)\left(x-3\right)}{x\left(x+1\right)}=\dfrac{x-3}{x}=\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(x-1\right)}\)
\(\Leftrightarrow\dfrac{x-3}{x}=\dfrac{x-3}{x}=\dfrac{x-3}{x}\)
Vậy 3 thức trên bằng nhau
cho hai phân thức 1/x-a và 2/x-b với a<b
a) hãy xác định a và b biết rằng khi quy đồng mẫu thức chúng trở thanh những phân thức có mẫu thức chung là x^2-5x+6
b)Với a và b tìm được hãy viết hai phân thức đã cho và hai phân thức thu được sau khi quy đồng với mẫu thức chung là x2-5x+6
a) \(\dfrac{1}{x-a};\dfrac{2}{x-b}\)
Theo đề bài ta có :
\(\left(x-a\right)\left(x-b\right)=x^2-5x+6\)
\(\Leftrightarrow\left(x-a\right)\left(x-b\right)=\left(x-2\right)\left(x-3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
b) \(\dfrac{1}{x-a}=\dfrac{1}{x-2}=\dfrac{x-3}{\left(x-2\right)\left(x-3\right)}=\dfrac{x-3}{x^2-5x+6}\)
\(\dfrac{2}{x-b}=\dfrac{1}{x-3}=\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x-6}{x^2-5x+6}\)
Bài 14:
Tìm các số a,b sao cho phân thức \(\frac{x^2+5}{x^3-3x-2}\)viết được thành \(\frac{a}{x-2}+\frac{b}{\left(x+1\right)^2}\)
Bài 15:
Viết phân thức \(\frac{10x-4}{x^3-4x}\) dưới dạng tổng ba phân thức mà mẫu số theo thứ tự là x;x+2;x-2, tử số là các hằng số.
\(\frac{a}{x-2}+\frac{b}{\left(x+1\right)^2}=\frac{a\left(x+1\right)^2+b\left(x-2\right)}{\left(x-2\right)\left(x+1\right)^2}=\frac{ax^2+\left(2a+b\right)x+\left(a-2b\right)}{x^3-3x-2}\)
\(\Rightarrow\frac{x^2+5}{x^3-3x-2}=\frac{ax^2+\left(2a+b\right)x+\left(a-2b\right)}{x^3-3x-2}\)
Đồng nhất hệ số, ta có :
\(\hept{\begin{cases}a=1\\2a+b=0\\a-2b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-2\end{cases}}}\)
cái thứ 2 tương tự
cho biểu thức M= \(\frac{x^2+y^2-z^2}{2xy}\)+\(\frac{y^2+z^2-x^2}{2yz}\)\(+\frac{z^2+x^2-y^2}{2xz}\)
a, cmr nếu M=1 thì trong ba số x,y,z có một số bằng tổng hai số kia và trong biểu thức M có hai phân thức có giá trị bằng 1, phân thức còn lại có giá trị bằng -1
b, nếu x,y,z là các độ dài đoạn thẳng và M>1 thì x,y,z là độ dài ba cạnh của một ta giác
1/ Phân tích đa thức thành nhân tử:
\(x^4+6x^3+7x^2-6x+1\)
2/ Tìm đa thức bậc ba P(x), biết P(x) chia cho x-1; x-2; x-3 đều dư 6 và P(-1)= -18.
Cho đa thức P(x) = 2x 4 −x 3 −5x 2 +5x−5. Gọi a,b, c là ba nghiệm phân biệt của đa thức Q(x) = x 3 −3x+1. Tính P(a).P(b).P(c).