Rút gọn biểu thức: P = xy , biết ( 3 a 3 − 3 b 3 ) x − 2 b = 2 a với a ≠ b và ( 4 a + 4 b ) y = 9 ( a − b ) 2 với
a,Tìm số nguyên x,y biết
xy+x-y=4
b,Rút gọn biểu thức sau
M=3-3^2+3^3-3^4+......+3^2015-3^2016
Cho biểu thức:
\(A=\left[\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right]:\left[\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-y}-\frac{x+y}{\sqrt{xy}}\right]\)
a)Rút gọn biểu thức A
b)Tính giá trị của biểu thức A biết \(x=3;y=4+2\sqrt{3}\)
Bài 3: Rút gọn các biểu thức sau:
A = 3x(x2 – 2x + 3) – x2(3x – 2) + 5(x2 – x)
B = x(x2 + xy + y2) – y(x2 + xy + y2)
\(A=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x=x^2+4x\\ B=\left(x^2+xy+y^2\right)\left(x-y\right)=x^3-y^3\)
Cho biểu thức:
A = (\(\sqrt{x}\) + \(\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)) : (\(\dfrac{x}{\sqrt{xy}+y}\) + \(\dfrac{y}{\sqrt{xy}-x}\) - \(\dfrac{x+y}{\sqrt{xy}}\))
a) Rút gọn A
b) Tính giá trị của biểu thức A biết x = 3; y = 4 + 2\(\sqrt{3}\)
rút gọn biểu thức A=x^2 ( x - y^2 ) - xy (1-xy) -x^3
\(A=x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\\ =x^3-x^2y^2-xy+x^2y^2-x^3\\ =\left(x^3-x^3\right)+\left(-x^2y^2+x^2y^2\right)-xy\\ =-xy\)
\(A=x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\)
\(=x^3-x^2y^2-xy+x^2y^2-x^3\)
\(=\left(x^3-x^3\right)+\left(-x^2y^2+x^2y^2\right)-xy\)
\(=-xy\)
Vậy \(A=-xy\)
#\(Toru\)
Rút gọn biểu thức ( giả sử các biểu thức đều có nghĩa)
a, √x/y^3+2x/y^4
b, x-√xy/√x-√y
c, (a-b)√a^2b^2/(a-b)^2
d, a-√3a+3/a√a+3√3
Bài 1 rút gọn biểu thức sau A,xy.(2x²-3)-x²(5xy+y)+x²y B,3xyz.(y-2)-5yz(1-y)-8z.(y²-3)
\(A,xy\left(2x^2-3\right)-x^2\left(5xy+y\right)+x^2y\\ =2x^3y-3xy-5x^3y-x^2y+x^2y\\ =\left(2x^3y-5x^3y\right)+\left(-x^2y+x^2y\right)-3xy\\ =-3x^3y-3xy\)
\(B,3xyz\left(y-2\right)-5yz\left(1-y\right)-8z\left(y^2-3\right)\\ =3xy^2z-6xyz-5yz+5y^2z-8y^2z+24z\\ =3xy^2z-6xyz+\left(5y^2z-8y^2z\right)-5yz+24z\\ =3xy^2z-6xyz-3y^2z-5yz+24z\)
Rút gọn biểu thức :
a ) ( 3 x 2 – 2 x 2 y ) : x 2 – ( 2 x y 2 + x 2 y ) : ( 1 / 3 x y )
a) (3x2 – 2x2y) : x2 – (2xy2 + x2y) : (1/3 xy)
= (3x3 : x2) + (-2x2y : x2) - [(2x2y : 1/3 xy) +( x2y : 1/3 xy)]
= 3x – 2y – (6y + 3x) = 3x – 2y – 6y – 3x = -8y
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
\(a,N=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ N=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\\ b,N=\left(x+y\right)^2-2xy=0-2\cdot1=-2\)
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
ĐKXĐ: \(x\ne y\)
a) \(N=\dfrac{x^2+y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}:\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=x^2+y^2\)
b) \(x+y=0\Leftrightarrow\left(x+y\right)^2=0\Leftrightarrow x^2+y^2-2xy=0\)
\(\Leftrightarrow N=x^2+y^2=0+2xy=2.1=2\)