Trong không gian Oxyz, khoảng cách giữa hai đường thẳng
A. 3 260 13
B. 0
C. 180 13
D. Đáp án khác
Trong không gian với hệ tọa độ Oxyz, xét đường thẳng Δ đi qua điểm A (0;0;1) và vuông góc với mặt phẳng Ozx. Tính khoảng cách nhỏ nhất giữa điểm B (0; 4; 0) tới điểm C trong đó C là điểm cách đều đường thẳng Δ và trục Ox
A. 1/2
B. 3 2
C. 6
D. 65 / 2
Chọn A
Vì đường thẳng Δ đi qua điểm A (0;0;1) và vuông góc với mặt phẳng Ozx thì Δ song song với trục Oy và nằm trong mặt phẳng Oyz. Dễ thấy OA là đường vuông góc chung của Δ và Ox
Xét mặt phẳng (α) đi qua I (0;0;1/2) và là mặt phẳng trung trực của OA.
Khi đó Δ // (α), Ox // (α) và mọi điểm nằm trên (α) có khoảng cách đến Δ và Ox là bằng nhau.
Vậy tập hợp điểm C là các điểm cách đều đường thẳng Δ và trục Ox là mặt phẳng (α). Mặt phẳng (α) đi qua I (0;0;1/2) có véc tơ pháp tuyến là nên có phương trình:
Đoạn BC nhỏ nhất khi C là hình chiếu vuông góc của B lên (α). Do đó khoảng cách nhỏ nhất giữa điểm B (0;4;0) tới điểm C chính là khoảng cách từ B (0;4;0) đến mặt phẳng (α):
Trong không gian Oxyz, cho đường thẳng
và mặt phẳng 2x - 2y + z + 3 = 0. Tính khoảng cách giữa d và (P)
A. 0
B. 3
C. 1
D. 9
Trong không gian Oxyz, cho hai điểm A(2; 0; 1), B(-1; 2; 3). Tính khoảng cách giữa hai điểm AB
A. A B = 17
B. A B = 13
C. A B = 14
D. A B = 19
Trong không gian Oxyz, cho hai điểm A(2; 0; 0), B(0; 0; 8) và điểm C sao cho AC → = (0; 6; 0). Tính khoảng cách từ trung điểm I của BC đến đường thẳng OA.
Do đó I(1; 3; 4)
Phương trình mặt phẳng ( α ) qua I và vuông góc với OA là: x – 1 = 0, ( α ) cắt OA tại K(1; 0; 0)
Khoảng cách từ I đến OA là:
Trong không gian Oxyz, cho mặt phẳng P : 2 x - 2 y + z + 5 = 0 Trong không gian Oxyz, cho mặt phẳng ∆ có phương trình tham số x = - 1 + t y = 2 - t z = - 3 - 4 t . Khoảng cách giữa đường thẳng ∆ và mặt phẳng (P) bằng:
A. - 4 3
B. 4 3
C. 2 3
D. 4 9
Trong không gian Oxyz, cho hai điểm I(0; 3; 4). Khoảng cách từ điểm I đến đường thẳng OA bằng:
A. 5
B. 10
C. 50
D. Đáp án khác
Đáp án A
Đường thẳng OA đi qua điểm O(0 ;0 ;0) và có vectơ chỉ phương là OA → = (2; 0; 0). Ta có:
Trong không gian Oxyz, cho điểm A 10 ; 2 ; 1 và đường thẳng d : x − 1 2 = y 1 = z − 1 3 . Gọi P là mặt phẳng đi qua điểm A, song song với đường thẳng d sao cho khoảng cách giữa d và P lớn nhất. Khoảng cách từ điểm M − 1 ; 2 ; 3 đến mặt phẳng P bằng
A. 3 29 29
B. 97 3 15
C. 2 13 13
D. 76 790 790
Trong không gian Oxyz cho mặt phẳng (P): 2x - 2y + z +5 = 0 và đường thẳng ∆ có phương trình tham số: x = - 1 + t y = 2 - t z = - 3 - 4 t .Khoảng cách giữa đường thẳng ∆ và (P) là
A. - 4 3
B. 4 3
C. 4
D. 4 9
Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng chéo nhau ∆ : x - 2 2 = y - 3 - 4 = z - 1 - 5 và d : x - 1 1 = y - 2 = z + 1 2 . Khoảng cách giữa hai đường thẳng ∆ và d bằng
A. 5 5
B. 45 14
C. 5
D. 3