Cho A = lx-1l - (2x-5)
a)Rút gọn A
b)Tìm x để A=3
Cho biểu thức:A=x+1/3x-x^2 : (3+x/3-x - 3-x/3+x - 12x^2/x^3-9)
a)Rút gọn A
b)Tính giá trí của A khi l2x-1l=5
c)Tìm x để A=2x+1/x^2
d)Tìm giá trị của x để A<0
a: \(A=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{12x^2}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{-x^2-6x-9+x^2-6x+9-12x^2}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{-\left(x+1\right)}{x\left(x-3\right)}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-12x^2-12x}\)
\(=\dfrac{-\left(x+1\right)\cdot\left(x+3\right)}{-12x^2\left(x+1\right)}=\dfrac{x+3}{12x^2}\)
b: Ta có: |2x-1|=5
=>2x-1=5 hoặc 2x-1=-5
=>x=-2
Thay x=-2 vào A, ta được:
\(A=\dfrac{-2+3}{12\cdot\left(-2\right)^2}=\dfrac{1}{48}\)
c: Để \(A=\dfrac{2x+1}{x^2}\) thì \(\dfrac{x+3}{12x^2}=\dfrac{2x+1}{x^2}\)
=>x+3=24x+12
=>24x+12=x+3
=>23x=-9
hay x=-9/23
d: Để A<0 thì x+3<0
hay x<-3
Cho A=2x+1/2x-1-2x-1/2x+1+4/1-x^2 và B=2x+1/x+2 với x khác 1/2;x khác -1/2;x khác 2;x khác -2
a)Rút gọn A
b)Tính giá trị của biểu thức Q=A.B tại x thỏa mãn lx-1l=3
c)Tìm các giá trị nguyên của x để biểu thức Q nhận giá trị nguyên
d)Tìm x để Q=-1
e)Tìm x để Q>0
A=2x-3-l3x-1l
1)Rút gọn A
2)Tìm x để A=4
3)Tìm A khi x = 2
\(\text{1)}\hept{\begin{cases}A=2x-3-3x+1=-x-2\\A=2x-3+3x-1=5x-4\end{cases}}\)
\(\text{2)}\hept{\begin{cases}A=-x-2=4\\A=5x-4=4\end{cases}\Rightarrow\hept{\begin{cases}x=-6\\x=\frac{8}{5}\end{cases}}}\)
\(\text{3)}\hept{\begin{cases}A=-2-2=-4\\A=5\times2-4=6\end{cases}}\)
Cho biểu thức B=(2x+1/2x-1 + 4/1-4x^2 - 2x-1/2x+1)2x+1/x+2
a)Tìm điều kiện của x để biểu thức B được xác định
b)Rút gọn B
c)Tính giá trị của biểu thức B tại x thỏa mãn lx-1l=3
d)Tìm giá trị nguyên của x để B nhận giá trị nguyên
a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)
b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)
\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)
Cho biểu thức M= (\(\frac{x}{x^2-4}-\frac{1}{x+2}\)) : (\(\frac{1}{x-2}-\frac{1}{x}\))
a) rút gọn M
b)Tính giá trị M biết lx-1l=3
c) Tìm x để M < 1.
a) \(=\frac{x-x+2}{x^2-4}:\frac{1-x+2}{x-2}\)ĐKXĐ:x\(\ne+-2\)
\(=\frac{2}{x^2-4}.\frac{x-2}{3-x}=\frac{2}{\left(x+2\right)\left(3-x\right)}\)
=\(\frac{2}{-x^2-x+6}\)
Giúp mk bài này mai mk kt rùi:
Bài 1:
A=lx-2l+x+3
Rút gọn A khi x<2
Bài 2:
Tìm Min của:
Q=lx+1l+lx-6l vs \(x\in Z\)
mk thanks
Bài 1
\(x< 2\Rightarrow x-2< 0\Rightarrow\left|x-2\right|=-\left(x-2\right)=2-x\)
\(\Rightarrow A=2-x+x+3=5\)
Bài 2 : Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xay ra \(\Leftrightarrow ab\ge0\) ta có :
\(Q=\left|x+1\right|+\left|x-6\right|=\left|x+1\right|+\left|6-x\right|\ge\left|x+1+6-x\right|=7\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)\left(6-x\right)\ge0\Leftrightarrow-1\le x\le6\)
Vậy Q min là 7 tại \(-1\le x\le6\)
A=(x-2)^2+x(4-x)-2x+4
a.Rút gọn biểu thức A
b.Tính giá trị của A khi lx-1l=2
c.Tìm x để A có giá trị=24
Mình cảm ơn trước ạ
a) \(A=x^2-4x+4+4x-x^2-2x+4=-2x+8\)
b) \(\left|x-1\right|=2\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(A=-2x+8=\)\(\left[{}\begin{matrix}-2.3+8=2\\-2.\left(-1\right)+8=10\end{matrix}\right.\)
c) \(A=-2x+8=24\Leftrightarrow-2x=16\Leftrightarrow x=-8\)
A=(x-4/x - x/x-4 + 16/x^2-4x).x/2x-2 (x khác 0;x khác 1;x khác 4)
a)Rút gọn A
b)Tính giá trị của biểu thức A tại x thỏa mãn lx+2l=6
c)Tìm các giá trị nguyên của x để A nhận giá trị nguyên
a: \(A=\dfrac{x^2-8x+16-x^2+16}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-4x}{\left(x+4\right)\left(x-1\right)}\)
Cho biểu thức: A = x+5/2x – x-6/5-x – 2x^2-2x-50/2x^2-10x
a) Rút gọn biểu thức A
b) Tìm x biết A = 1/3
a: \(A=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-10x+25}{2x\left(x-5\right)}=\dfrac{x-5}{2x}\)
b: Để A=1/3 thì x-5/2x=1/3
=>3x-15=2x
=>x=15