Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bùi việt quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 3 2023 lúc 14:07

a: Để A nguyên thì \(n+2\in\left\{1;-1;3;-3\right\}\)

=>\(n\in\left\{-1;-3;1;-5\right\}\)

b: n+6/n+7

Gọi d=ƯCLN(n+6;n+7)

=>n+6-n-7 chiahết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

no name
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 9 2018 lúc 17:52

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vũ Phương Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 21:54

a: Gọi d=ƯCLN(2n+7;2n+3)

=>2n+7 chia hết cho d và 2n+3 chia hết cho d

=>2n+7-2n-3 chia hết cho d

=>4 chia hết cho d

mà 2n+7 lẻ

nên d=1

=>PSTG

b: Gọi d=ƯCLN(6n+5;8n+7)

=>4(6n+5)-3(8n+7) chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

 

Nguyễn Bảo Lâm
28 tháng 2 lúc 19:38

1.    a. Tính :

1.    a. Tính :

Xtxt
Xem chi tiết
no name
Xem chi tiết
Thanh Tùng DZ
1 tháng 6 2018 lúc 14:51

b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7

Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]

= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )

Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )

 n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )

Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )

Ta thấy A là tích của 7 số nguyên liên tiếp nên :

- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )

- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )

- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )

- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

Bùi Hạnh Vân
Xem chi tiết
truong_31
3 tháng 5 2016 lúc 20:38

sao ma kho 

Ngáo TV
27 tháng 1 2022 lúc 21:41

Bùi Việt Cuờng
Xem chi tiết
giang ho dai ca
21 tháng 5 2015 lúc 19:58

xem ở đây nè:

http://d.violet.vn//uploads/resources/733/3687956/preview.swf

bài 1 nhé

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 8:18

ĐK:n≠-2

Gọi \(d=ƯCLN\left(n+3,n+2\right)\)

\(\Rightarrow n+3⋮d;n+2⋮d\\ \Rightarrow n+3-n-2⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy n+3 và n+2 nctn hay \(\dfrac{n+3}{n+2}\) tối giản

Với n=-2 trái vs ĐKXĐ nên A ko xác định