Giải phương trình sau bằng cách đưa về phương trình tích: (x + 1)2 = 4(x2 – 2x + 1)
Giải phương trình bằng cách đưa về phương trình tích:
(x2 + 2x – 5)2 = (x2 – x + 5)2
(x2 + 2x – 5)2 = (x2 – x + 5)2
⇔ (x2 + 2x – 5)2 – (x2 – x + 5)2 = 0
⇔ [(x2 + 2x – 5) – (x2 – x + 5)].[(x2 + 2x – 5) + (x2 – x + 5)] = 0
⇔ (3x – 10)(2x2 + x ) = 0
⇔ (3x-10).x.(2x+1)=0
+ Giải (1): 3x – 10 = 0 ⇔
+ Giải (2):
Giải phương trình bằng cách đưa về phương trình tích:
a ) 3 x 2 − 7 x − 10 ⋅ 2 x 2 + ( 1 − 5 ) x + 5 − 3 = 0 b ) x 3 + 3 x 2 − 2 x − 6 = 0 c ) x 2 − 1 ( 0 , 6 x + 1 ) = 0 , 6 x 2 + x d ) x 2 + 2 x − 5 2 = x 2 − x + 5 2
a) 3 x 2 − 7 x − 10 ⋅ 2 x 2 + ( 1 − 5 ) x + 5 − 3 = 0
+ Giải (1):
3 x 2 – 7 x – 10 = 0
Có a = 3; b = -7; c = -10
⇒ a – b + c = 0
⇒ (1) có hai nghiệm x 1 = - 1 v à x 2 = - c / a = 10 / 3 .
+ Giải (2):
2 x 2 + ( 1 - √ 5 ) x + √ 5 - 3 = 0
Có a = 2; b = 1 - √5; c = √5 - 3
⇒ a + b + c = 0
⇒ (2) có hai nghiệm:
Vậy phương trình có tập nghiệm
b)
x 3 + 3 x 2 - 2 x - 6 = 0 ⇔ x 3 + 3 x 2 - ( 2 x + 6 ) = 0 ⇔ x 2 ( x + 3 ) - 2 ( x + 3 ) = 0 ⇔ x 2 - 2 ( x + 3 ) = 0
+ Giải (1): x 2 – 2 = 0 ⇔ x 2 = 2 ⇔ x = √2 hoặc x = -√2.
+ Giải (2): x + 3 = 0 ⇔ x = -3.
Vậy phương trình có tập nghiệm S = {-3; -√2; √2}
c)
x 2 − 1 ( 0 , 6 x + 1 ) = 0 , 6 x 2 + x ⇔ x 2 − 1 ( 0 , 6 x + 1 ) = x ⋅ ( 0 , 6 x + 1 ) ⇔ x 2 − 1 ( 0 , 6 x + 1 ) − x ( 0 , 6 x + 1 ) = 0 ⇔ ( 0 , 6 x + 1 ) x 2 − 1 − x = 0
+ Giải (1): 0,6x + 1 = 0 ⇔
+ Giải (2):
x 2 – x – 1 = 0
Có a = 1; b = -1; c = -1
⇒ Δ = ( - 1 ) 2 – 4 . 1 . ( - 1 ) = 5 > 0
⇒ (2) có hai nghiệm
Vậy phương trình có tập nghiệm
d)
x 2 + 2 x − 5 2 = x 2 − x + 5 2 ⇔ x 2 + 2 x − 5 2 − x 2 − x + 5 2 = 0 ⇔ x 2 + 2 x − 5 − x 2 − x + 5 ⋅ x 2 + 2 x − 5 + x 2 − x + 5 = 0 ⇔ ( 3 x − 10 ) 2 x 2 + x = 0
⇔ (3x-10).x.(2x+1)=0
+ Giải (1): 3x – 10 = 0 ⇔
+ Giải (2):
Giải phương trình sau bằng cách đưa về phương trình tích: (2x + 1)(3x – 2) = (5x – 8)(2x + 1)
(2x + 1)(3x – 2) = (5x – 8)(2x + 1)
⇔ (2x + 1)(3x – 2) – (5x – 8)(2x + 1) = 0
⇔ (2x + 1).[(3x – 2) – (5x – 8)] = 0
⇔ (2x + 1).(3x – 2 – 5x + 8) = 0
⇔ (2x + 1)(6 – 2x) = 0
⇔ 2x + 1 = 0 hoặc 6 – 2x = 0
+ 2x + 1 = 0 ⇔ 2x = -1 ⇔ x = -1/2.
+ 6 – 2x = 0 ⇔ 6 = 2x ⇔ x = 3.
Vậy phương trình có tập nghiệm
Giải các phương trình sau bằng cách đưa về phương trình tích
a) 2x(x-5)+4(x-5)=0
b) 3x-15=2x(x-5)
c) (2x+1)(3x-2)=(5x-8)(2x+1)
d) (4x^2-1+(2x+1)(3x-5)
\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{5;-2\right\}\)
\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)
\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)
Câu d xem lại đề
Giải phương trình bằng cách đưa về phương trình tích:
(x2 – 1)(0,6x + 1) = 0,6x2 + x
(x2 – 1)(0,6x + 1) = 0,6x2 + x
⇔ (x2 – 1)(0,6x + 1) = x.(0,6x + 1)
⇔ (x2 – 1)(0,6x + 1) – x(0,6x + 1) = 0
⇔ (0,6x + 1)(x2 – 1 – x) = 0
+ Giải (1): 0,6x + 1 = 0 ⇔
+ Giải (2):
x2 – x – 1 = 0
Có a = 1; b = -1; c = -1
⇒ Δ = (-1)2 – 4.1.(-1) = 5 > 0
⇒ (2) có hai nghiệm
Vậy phương trình có tập nghiệm
Giải các phương trình bằng cách đưa về dạng phương trình tích: x 2 – 5 = (2x - 5 )(x + 5 )
x 2 – 5 = (2x - 5 )(x + 5 )
⇔ (x + 5 )(x - 5 ) = (2x - 5 )(x + 5 )
⇔ (x + 5 )(x - 5 ) – (2x - 5 )(x + 5 ) = 0
⇔ (x + 5 )[(x - 5 ) – (2x - 5 )] = 0
⇔ (x + 5 )(- x) = 0 ⇔ x + 5 = 0 hoặc – x = 0
x + 5 = 0 ⇔ x = - 5
x = 0 ⇔ x = 0
Vậy phương trình có nghiệm x = - 5 hoặc x = 0.
Giải các phương trình sau bằng cách đưa về phương trình tích x 2 + x + 1 2 = 4 x - 1 2
Ta có: x 2 + x + 1 2 = 4 x - 1 2
⇔ [( x 2 +x +1) + (4x -1 )] [( x 2 +x +1) - (4x -1 )]=0
⇔ ( x 2 +5x)( x 2 -3x +2) =0 ⇔ x(x+5) ( x 2 -3x +2) =0
⇔ x =0 hoặc x+5 =0 hoặc x2 -3x +2 =0
x+5 =0 ⇔ x=-5
x 2 -3x +2 =0
∆ = - 3 2 -4.2.1 = 9 -8 =1 > 0
∆ = 1 =1
Vậy phương trình đã cho có 4 nghiệm:
x 1 =0 ; x 2 =-5 ; x 3 =2 ; x 4 =1
Giải phương trình sau bằng cách đưa về phương trình tích: 4x2 – 1 = (2x + 1)(3x – 5)
4x2 – 1 = (2x + 1)(3x – 5)
⇔ 4x2 – 1 – (2x + 1)(3x – 5) = 0
⇔ (2x – 1)(2x + 1) – (2x + 1)(3x – 5) = 0
⇔ (2x + 1)[(2x – 1) – (3x – 5)] = 0
⇔ (2x + 1)(2x – 1 – 3x + 5) = 0
⇔ (2x + 1)(4 – x) = 0
⇔ 2x + 1= 0 hoặc 4 – x = 0
+ 2x + 1 = 0 ⇔ 2x = -1 ⇔ x = -1/2.
+ 4 – x = 0 ⇔ x = 4.
Vậy phương trình có tập nghiệm
Giải các phương trình sau bằng cách đưa về phương trình tích x 2 + 3 x + 2 2 = 6.( x 2 +3x +2)
⇔ [( x 2 +x +1) + (4x -1 )] [( x 2 +x +1) - (4x -1 )]=0
∆ = - 3 2 -4.2.1 = 9 -8 =1 > 0
∆ = 1 =1
x 2 + 3 x + 2 2 = 6.( x 2 +3x +2)
⇔ x 2 + 3 x + 2 2 - 6.( x 2 +3x +2)=0
⇔ ( x 2 +3x + 2)[ ( x 2 +3x + 2) -6] =0
⇔ ( x 2 +3x + 2) .( x 2 +3x -4 )=0
x 2 +3x + 2 =0
Phương trình có dạng a –b +c =0 nên x 1 = -1 , x 2 =-2
x 2 +3x -4 =0
Phương trình có dạng a +b +c =0 nên x 1 = 1 , x 2 = -4
Vậy phương trình đã cho có 4 nghiệm :
x 1 = -1 , x 2 =-2 ; x 3 = 1 , x 4 =-4