Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Bảo Hồng Phương
Xem chi tiết
Be Chip
4 tháng 11 2015 lúc 6:39

n=7

nha ban 

Lê Thế Dũng
Xem chi tiết
Võ Đông Anh Tuấn
31 tháng 7 2016 lúc 10:53

Dùng quy nạp nhé!!! 
10ⁿ+18n-1 chia hết cho 27 (*) 
Với n=0 thì 10ⁿ+18n-1=1+0-1=0 chia hết cho 27 
Giả sử mệnh đề (*) đúng với n=k(k thuộc N,k≥0) 
Tức là 10^k+18k-1=27t 
Xét 10^(k+1)+18(k+1)-1 
=10^k+18k-1+9.10^k+18 
=27t+9(10^k-1)+27(1) 
Mặt khác 10^k-1 chia hết cho 10-1=9 
=>10^k-1 chia hết cho 3 
=>9(10^k-1) chia hết cho 27(2) 
từ (1),(2)=> mệnh đề (*) đúng với n=k+1 
Vậy 10ⁿ+18n-1 chia hết cho 27 với mọi n thuộc N 

Edogawa Conan
5 tháng 8 2016 lúc 8:24

10ⁿ+18n-1 chia hết cho 27 (*) 
Với n=0 thì 10ⁿ+18n-1=1+0-1=0 chia hết cho 27 
Giả sử mệnh đề (*) đúng với n=k(k thuộc N,k≥0) 
Tức là 10^k+18k-1=27t 
Xét 10^(k+1)+18(k+1)-1 
=10^k+18k-1+9.10^k+18 
=27t+9(10^k-1)+27(1) 
Mặt khác 10^k-1 chia hết cho 10-1=9 
=>10^k-1 chia hết cho 3 
=>9(10^k-1) chia hết cho 27(2) 
từ (1),(2)=> mệnh đề (*) đúng với n=k+1 
Vậy 10ⁿ+18n-1 chia hết cho 27 với mọi n thuộc N 

Dung Nhi
Xem chi tiết
Nguyễn Tuấn Minh
13 tháng 8 2016 lúc 20:46

Với n=3k+1 thì n2=(3k+1)(3k+1)=9k2+3k+3k+1

Vì 1 chia 3 dư 1 nên n2 chia 3 dư 1 (1)

Với n=3k+2 thì n2(3k+2)(3k+2)=9k2+2.3k+2.3k+4

Vì 4 chia 3 dư 1 nên n2 chia 3 dư 1 (2)

Từ (1) và (2) =>ĐPCM

soyeon_Tiểu bàng giải
13 tháng 8 2016 lúc 20:45

Do n không chia hết cho 3 => n = 3k + 1 hoặc n = 3k + 2 \(\left(k\in N\right)\)

+ Nếu n = 3k = 1 thì n2 = (3k + 1).(3k + 1)

                                  = (3k + 1).3k + (3k + 1)

                                  = 9k2 + 3k + 3k + 1 chia 3 dư 1

+ Nếu n = 3k + 2 thì n2 = (3k + 2).(3k + 2)

                                   = (3k + 2).3k + (3k + 2)

                                   = 9k2 + 6k + 3k + 4 chia 3 dư 1

Vậy n2 luôn chia 3 dư 1 với mọi \(n\in N\); n không chia hết cho 3 (đpcm)

Dung Nhi
13 tháng 8 2016 lúc 20:50

bạn ơi nhưng 1 chia 3 dư 2 mà

CẢM ƠN NHA!!!!!!!

nguyễn thế dũng
Xem chi tiết
trân
21 tháng 1 2016 lúc 21:36

tick trước đi mình giải chi tiết luôn nha

nguyen tuan hung
Xem chi tiết
Kỉ niệm tuổi thơ
14 tháng 7 2015 lúc 23:00

Ta có:

Vì n không chia hết cho 3 nên: n=(a.3+1) hoặc (a.3+2)

Nếu n=(a.3+1) thì:(a.3+1)2=a.3.a.3+a.3+a.3+1 Vì (a.3.a.3+a.3+a.3)đều chia hết cho 3 nhưng 1:3(dư 1)

Suy ra (a.3+1)2:3(dư 1)

Nếu n=(a.3+2) thì:(a.3+2)2=a.3.a.3+a.3.2+2.a.3+2.2 Vì (a.3.a.3+a.2.3+2.a.3)đều chia hết cho 3 nhưng (2.2):3(dư 1)

Suy ra (a.3+2)2:3(dư 1)

Vậy ĐCCM

Lương Khánh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 23:34

Câu 2:

n lẻ nên n=2k+1

\(n^2+n+1\)

\(=\left(2k+1\right)^2+2k+1+1\)

\(=4k^2+4k+1+2k+2\)

\(=4k^2+6k+3=2\left(2k^2+3k\right)+3⋮̸2\)

hay \(n^2+n+1⋮̸8\)

NamGumBall
Xem chi tiết
Cô Hoàng Huyền
3 tháng 11 2017 lúc 8:39

Đề bài của em bị sai nhé.

Ta có thể sửa thành hai đề bài đúng:

Bài 1: Cho n là số tự nhiên, n>3, n chia hết cho 3. CMR n2 chia hết 3.

Giải: 

n chia hết 3 nên n có dạng 3k (k là số tự nhiên)

Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.

Bài 2: Cho n là số tự nhiên, n>3, n  không chia hết cho 3. CMR n2:3 dư 1

Giải:

Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)

Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.

Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.

Vậy n2 luôn chia 3 dư 1.

TAKASA
15 tháng 8 2018 lúc 23:16

Bài giải :  

n chia hết 3 nên n có dạng 3k (k là số tự nhiên)

Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.

Bài 2: Cho n là số tự nhiên, n>3, n  không chia hết cho 3. CMR n2:3 dư 1

Giải:

Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)

Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.

Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.

Vậy n2 luôn chia 3 dư 1.

 Đúng 2  Sai 1

Nguyễn Trần Lam Trúc
Xem chi tiết
Trên con đường thành côn...
7 tháng 8 2021 lúc 20:33

undefined

Nguyễn Lê Phước Thịnh
7 tháng 8 2021 lúc 23:05

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

Hatake Kakashi
Xem chi tiết