Cho a>c,b>c,c>0. Chứng minh \(\sqrt{ab}\ge\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)
1. Cho a,b,c,d là các số dương. Chứng minh rằng: \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)
2. Cho (x;y;z) và (a;b;c) là các số dương. Chứng minh rằng: \(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
3. Cho \(c>0\) và \(a,b\ge c\). Chứng minh rằng: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Cho a,b,c là độ dài 3 cạnh 1 tam giác và \(a\ge b\ge c\). Chứng minh rằng
\(\sqrt{a\left(a+b-\sqrt{ab}\right)}+\sqrt{b\left(a+c-\sqrt{ac}\right)}+\sqrt{c\left(c+b-\sqrt{bc}\right)}\ge a+b +c\)
Cho a, b, c \(\ge\)0 . thỏa a + b + c = 1
Chứng minh : \(\sqrt{a+\left(b-c\right)^2}+\sqrt{b+\left(c-a\right)^2}+\sqrt{c+\left(a-b\right)^2}\ge\sqrt{3}\)
Chứng minh với a; b; c; d > 0
\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\) \(\ge\) \(\left(a+b\right)\left(c+d\right)\)
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ac+bc\right)^2}=ac+bc\)
CMTT : \(\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ad+bd\)
Ta có :\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ac+bc+ad+bd=\left(a+b\right)\left(c+d\right)\)
Áp dụng BĐT Bunhiacopxki:
CMTT :
Ta có :
cho a,b,c>0. chứng minh rằng:
\(\sqrt{\frac{\left(a^2+bc\right)\left(b+c\right)}{a\left(b^2+c^2\right)}}\) +\(\sqrt{\frac{\left(b^2+ac\right)\left(a+c\right)}{b\left(a^2+c^2\right)}}\) +\(\sqrt{\frac{\left(c^2+ab\right)\left(a+b\right)}{c\left(a^2+b^2\right)}}\) \(\ge\) \(3\sqrt{2}\)
Ta có:\(\left(a^2+bc\right)\left(b+c\right)=b\left(a^2+c^2\right)+c\left(a^2+b^2\right)\)
\(\Rightarrow\sqrt{\frac{\left(a^2+bc\right)\left(b+c\right)}{a\left(b^2+c^2\right)}}=\sqrt{\frac{b\left(a^2+c^2\right)+c\left(a^2+b^2\right)}{a\left(b^2+c^2\right)}}\)
Tương tự\(\Rightarrow\)VT=\(\Sigma\sqrt{\frac{b\left(a^2+c^2\right)+c\left(a^2+b^2\right)}{a\left(b^2+c^2\right)}}\)
Đặt \(x=a\left(b^2+c^2\right)\);\(y=b\left(a^2+c^2\right)\);\(z=c\left(b^2+a^2\right)\)
VT=\(\sqrt{\frac{x+y}{z}}+\sqrt{\frac{y+z}{x}}+\sqrt{\frac{x+z}{y}}\ge3\sqrt[6]{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}}\ge3\sqrt{2}\)(BĐT Cô-si)
Dấu''='' xra\(\Leftrightarrow\)a=b=c
Cho a,b,c>0 và \(ab+bc+ca\ge\frac{4}{3}\).chứng minh
\(\sqrt{a^2+\frac{1}{\left(b+1\right)^2}}+\sqrt{b^2+\frac{1}{\left(c+1\right)^2}}+\sqrt{c^2+\frac{1}{\left(a+1\right)^2}}\ge\frac{\sqrt{181}}{5}\)
Cho các số thực dương a;b;c thỏa mãn: \(a\ge c;b\ge c\)
Chứng minh rằng:
\(\sqrt{c.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\le\sqrt{ab}\)
Vì a ; b ; c dương , áp dụng BĐT Cô - si cho các cặp số dương , ta có :
\(\frac{c}{b}+\frac{a-c}{a}\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}\)
\(\frac{c}{a}+\frac{b-c}{b}\ge2\sqrt{\frac{c\left(b-c\right)}{ab}}\)
\(\Rightarrow2\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}+2\sqrt{\frac{c\left(b-c\right)}{ab}}\)
\(\Rightarrow1\ge\frac{\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\)
\(\Rightarrow\sqrt{ab}\ge\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{c}{b}=\frac{a-c}{a};\frac{c}{a}=\frac{b-c}{b}\)
\(\Leftrightarrow\frac{c}{b}+\frac{c}{a}=1\) \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)
Vì \(a;b\ge c\Rightarrow a=b=2c\)
Vậy ...
BĐT cần chứng minh tương đương: \(\sqrt{\frac{c\left(a-c\right)}{ba}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)
Áp dụng BĐT Cauchy:
\(VT\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)=\frac{1}{2}\left(\frac{a-c+c}{a}+\frac{c+b-c}{b}\right)=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=2c\)
Cho a, b, c, d >0. Chứng minh rằng: \(\sqrt{\left(a+b\right).\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)
Ta có : \(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)
\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
\(\Leftrightarrow ac+ad+bc+bd\ge ac+2\sqrt{acbd}+bd\)
\(\Leftrightarrow ad-2\sqrt{adbc}+bc\ge0\)
\(\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi : \(ad=bc\)
Vậy ...
Sử dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(a+b\right)\left(c+d\right)=\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{c}^2+\sqrt{d}^2\right)\)
\(\ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
\(< =>\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\left(đpcm\right)\)
okey?
Cho a,b,c > 0 và ab + bc + ca \(\ge\frac{4}{3}\)
Chứng minh :
\(\sqrt{a^2+\frac{1}{\left(b+1\right)^2}}+\sqrt{b^2+\frac{1}{\left(c+1\right)^2}}+\sqrt{c^2+\frac{1}{\left(a+1\right)^2}}\ge\frac{\sqrt{181}}{5}\)
#: Lỡ hẹn với Mincopxki rồi xài cách khác vậy :(
Đặt \(a=\frac{2x}{3};b=\frac{2y}{3};c=\frac{2z}{3}\)
Khi đó ta có \(xy+yz+xz\ge3\) và cần chứng minh
\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\ge\frac{\sqrt{181}}{5}\)
Áp dụng BĐT Cauchy-Schwarz ta có:\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\)
\(=\frac{15}{\sqrt{181}}Σ_{cyc}\sqrt{\left(\frac{4}{9}+\frac{9}{25}\right)\left(\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}\right)}\ge\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\)
Giờ chỉ cần chứng minh \(\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\ge\frac{\sqrt{181}}{5}\)
\(\Leftrightarrow20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)\ge\frac{543}{5}\)
Đặt tiếp \(x+y+z=3u;xy+yz+xz=3v^2\left(v>0\right)\)
Vì thế \(u\ge v\ge1\)và áp dụng BĐT C-S dạng Engel ta có:
\(20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)-\frac{543}{5}\)
\(\ge20\left(x+y+z\right)+81\cdot\frac{\left(1+1+1\right)^2}{Σ_{cyc}\left(2x+3\right)}-\frac{543}{5}=60u+\frac{729}{6u+9}-\frac{543}{5}\)
\(=3\left(20u+\frac{81}{2u+3}-\frac{181}{5}\right)=\frac{6\left(u-1\right)\left(100u+69\right)}{5\left(2u+3\right)}\ge0\)
Điều này đúng tức là ta có ĐPCM