Áp dụng để rút gọn biểu thức sau: M = 1 x 2 - 5 x + 6 + 1 x 2 - 7 x + 12 + 1 x 2 - 9 x + 20 + 1 x 2 - 11 x + 30
Bài 1 (2điểm)
1) Nêu điều kiện để √a có nghĩa ?
2) Áp dụng: Tìm x để các căn thức sau có nghĩa:
Bài 2: ( 3 điểm ): Rút gọn biểu thức
Bài 3 ( 4 điểm ) Cho biểu thức
(Với x > 0; x 1; x4)
a/ Rút gọn P.
b/ Với giá trị nào của x thì P có giá trị bằng 1/4
c/ Tính giá trị của P tại x = 4 + 2√3
d/ Tìm số nguyên x để biểu thức P có giá trị là số nguyên ?
Bài 4 : ( 1 điểm ): Cho
Tìm giá trị nhỏ nhất của A, giá trị đó đạt được khi x bằng bao nhiêu?
Rút gọn biểu thức sau bằng cách áp dụng hằng đẳng thức đáng nhớ:
(x^2+1/x+1/9)(x-1/3)-(x-1/3)^3
Câu 2: Áp dụng quy tắc dấu ngoặc để rút gọn biểu thức:
a) A = 23 - x - (x - 46) + 2x - 43
b) B = - (4 - 2x) + [ 76 - x - (x + 99)]
\(A=23-x-x+46+2x-43=26\)
\(B=-4+2x+76-x-x-99=-27\)
áp dụng hằng đẳng thức rồi rút gọn biểu thức sau:(4x-3)(3x+2)-(6x+1)(2x+5)+1
\(\left(4x-3\right)\left(3x+2\right)-\left(6x+1\right)\left(2x+5\right)+1\)
\(=\left(12x^2-9x+8x-6\right)-\left(12x^2+2x+30x+5\right)+1\)
\(=\left(-x-32x\right)+\left(-6-5+1\right)=-33x-10\)
Bài 1: Cho biểu thức P = √x √x x-4 √x−2+√x+2) 2√x (với x > 0 và x ≠ 4) a) Rút gọn biểu thức P b) Tìm x để P = 3 Cho biểu thức P = √x √x x-25 + √x-5 √x+5) 2√x (với x > 0 và x ≠ 25) a) Rút gọn biểu thức P b) Tìm x để P = 2
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
Rút gọn biểu thức sau, rồi tìm giá trị của x để giá trị của biểu thức rút gọn là 1 số dương:
\(\dfrac{8-2x}{x^2+x-20}\)
\(\dfrac{8-2x}{x^2+x-20}=-\dfrac{2\left(4-x\right)}{\left(4-x\right)\left(x+5\right)}=\dfrac{-2}{x+5}\)
Để biểu thức trên nhận giá trị dương khi
\(x+5< 0\)do -2 < 0
\(\Leftrightarrow x< -5\)
Cho biểu thức M= 2x/x+5+x+30-x^2/x^2-25+-1/x-5
a, rút gọn biểu thức
b, Tìm số nguyên x để M nhận giá trị nguyên
a: \(M=\dfrac{2x^2-10x-x^2+x+30-x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)
b: Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(x\in\left\{-4;-6;-3;-7;0;-10;-15\right\}\)
Chứng minh CT \(cotx-tanx=2cot2x\) sau đó áp dụng để rút gọn biểu thức sau:
\(S=tana+2tan\left(2a\right)+4tan\left(4a\right)+.....+2^ntan\left(2^na\right)\)
1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z để (A,B)thuộc Z
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0
3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B b)tìm x để B=3/2 c) tìm giá trị nguyên của x để B có giả trị nguyên
4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1 d) tìm giá trị nhỏ nhất của biểu thức C
5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
bạn viết thế này khó nhìn quá
nhìn hơi đau mắt nhá bạn hoa mắt quá