Cho S : x 2 + y 2 + z 2 − 4 x − 2 y + 10 z + 14 = 0 . Mặt phẳng P : x + y + z − 4 = 0 cắt mặt cầu (S) theo giao tuyến là một hình tròn có diện tích là
A. 6 π
B. 2 π
C. 3 π
D. 4 π
Bài 1: Cho x+y+z =0 và x^2+ y^2 + z^2=14
Tính S= x^4+y^4+z^4
Bài 2: Cho 1/x +1/y +1/z= 13 và x+y+z= xyz
Tính S= 1/x^2 +1/y^2 +1/z^2
Bài 3: Cho a,b,c khác 0 và a+b+c = 0
Tính S= 1/ a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/ c^2+a^2-b^2
Bài 4: Cho x>y>0 và 3x^2+ 3y^2 = 10xy
Tính S= x-y / x+y
Bài 5: Cho a^2+4b+4 và b^2+ 4c+4 và c^2+ 4a+4 = 0
Tính S= a^18+ b^18+ c^18
Cho x+y-z=0 và xy+yz-xz=0.tính s=(x-z-2)^3+1/7(x+y-7)^3-4/9(y+z-3/2)^4
cho các số x,y,z thỏa mãn x+y+z=0 và \(x^2+y^2+z^2=2\)
tính giá trị của biểu thức S=\(x^4+y^4+z^4\)
1,Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Chứng minh rằng : (x2y2 + y2z2 + z2x2)2 = 2(x4y4 + y4z4 +z4x4)
2, cho x+y+z =0
và xy + yz + zx =0
Tính S = (x - 1)1999 + y2003 + (z + 1)2006
Ta có: \(x+y+z=0\)
\(\Leftrightarrow\) \(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2=0\) (vì xy + yz + xz =0)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=0\)
1/ Cho x, y, z khác 0 và xy + yz + zx = 0.
Tính S= (y+z)/x + (z+x)/y + (x+y)/z
2/ Cho x= y+1. C/m (x + y)(x2 + y2)(x4 + y4)= (x8 - y8)
2) \(x=y+1\Rightarrow x-y=1\)
\(\Rightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow x^8-y^8=x^8-y^8\)(đúng)
Vậy \(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)(đpcm)
thu gọn tổng : S=1-2+2^2-2^3+2^4-2^5+...-2^999+2^1000
tìm x;y;z thuộc Z : x^2=y-1; y^2=z-1;z^2=x-1
cho n thuộc Z: cm (n-1)(n-2)+12 không chia hết cho 9
giúp mình nha ! mình cần trước 1h chều ngày mai
Cho x,y,z thỏa mãn x,y,z khác 0 và x+y+z=0. Tính
S=1/x^2+y^2-z^2+1/y^2+z^2-x^2+1/z^2+x^2-y^2
\(x+y+z=0\)
⇔\(-x=y+z\)
⇔\(x^2=\left(y+z\right)^2\)
⇔\(x^2=y^2+2yz+z^2\)
⇔\(y^2+z^2-x^2=-2yz\)
Tương tự:
\(z^2+x^2-y^2=-2zx\)
\(x^2+y^2-z^2=-2xy\)
➞ S = \(\dfrac{1}{-2xy}+\dfrac{1}{-2yz}+\dfrac{1}{-2zx}=\dfrac{x+y+z}{-2xyz}=0\)
Vậy S = 0
Cho x,y,z thỏa mãn: x,y,z khác 0 và x+y+z=0. Tính:
S=1/x^2+y^2-z^2 + 1/y^2+z^2-x^2 + 1/z^2+x^2-y^2
Ta có:
\(x+y+z=0\)
\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Rightarrow x^2+y^2+2xy=z^2\)
\(\Rightarrow x^2+y^2-z^2=-2xy\)
Tương tự ta được:
\(S=\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}=-\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=-\frac{1}{2}\cdot\frac{x+y+z}{xyz}=0\)
Vậy S=0
Cho x,y,z >0. Chứng minh:
\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
Bài 1: cho x+y+z=0 và x^2+y^2+z^2=14 .Tính S=x^4+y^4+z^4
Bài 2: cho x>y>0 và a+b+c=0.Tính S= \(\dfrac{1}{a^2+b^2-c^2}\)+\(\dfrac{1}{b^2+c^2-a^2}\)+\(\dfrac{1}{c^2+a^2-b^2}\)
bài 3: cho a^2 +4b +4=0
b^2 +4c+4=0
c^2 +4a+4=0 .Tính S=a^18+b^18+c^18
1,
\(x^2+y^2+y^2=14\)
\(\Rightarrow\left(x+y+z\right)^2-2xy-2yz-2zx=14\)
\(\Rightarrow-2\left(xy+yz+zx\right)=14\)
\(\Rightarrow xy+yz+zx=-7\)
\(\Rightarrow\left(xy+yz+zx\right)^2=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=49\)
Ta có: \(x^4+y^4+z^4\)
\(=\left(x^2+y^2+z^2\right)^2-2x^2y^2-2y^2z^2-2z^2x^2\)
\(=14^2-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(=14^2-2.49\)
\(=196-98\)
\(=98\)