cm rằng các phân số sau tối giản vs mọi số tự nhiên n
b,12n+1/30n+2
c,n^3+2n/n^4+3n^2+1
d, 2n+1/2n^2-1
Cm rằng các phân số sau tối giản vs mọi số tự nhiên n:
A,3n+1/5n+2
B,12n+1/30n+2
C,2n+1/2n*n-1
Các bn giúp mik nhà🥺🥺🥺🥺
Chứng minh rằng các phân số sau là phân số tối giản với mọi n là số tự nhiên:
a, 2n+1/2n+3
b, 14n2+17/21n2+25
c, 12n+1/30n+2
d, 3n3-2/4n3 -3
a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath
Cm phân thức sau tối giản với mọi số tự nhiên n
a. (12n+1)/(30n+2)
b. (n3+2n)/(n4+3n2+1)
c. (2n+1)/(2n2-1)
a/ Gọi ước chung lớn nhất của \(12n+1\) và \(30n+2\) là \(d\in Z^+\)
\(\Rightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(60n+5\right)⋮d\\\left(60n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\)\(12n+1\) và \(30n+2\) nguyên tố cùng nhau \(\Rightarrow\frac{12n+1}{30n+2}\) tối giản
b/ \(n=0\) thì \(\frac{0}{1}\) có coi là tối giản không nhỉ? Quên mất rồi, mất căn bản trầm trọng quá
Gọi d là ước chung lớn nhất \(n^3+2n\) và \(n^4+3n^2+1\)
\(\Rightarrow\left\{{}\begin{matrix}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\) \(\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^2-1⋮d\Rightarrow n^3+2n-n\left(n^2-1\right)⋮d\Rightarrow n⋮d\) \(\forall n\Rightarrow d=1\)
\(\Rightarrow\) tử và mẫu nguyên tố cùng nhau \(\Rightarrow\) phân số là tối giản
c/ Gọi ước chung lớn nhất của 2n+1 và \(2n^2-1=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n^2-1⋮d\end{matrix}\right.\) \(\Rightarrow n\left(2n+1\right)-\left(2n^2-1\right)⋮d\Rightarrow n+1⋮d\)
\(\Rightarrow2\left(n+1\right)-\left(2n+1\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(2n+1\) và \(2n^2-1\) nguyên tố cùng nhau \(\Rightarrow\) phân số tối giản
\(12n+1\)
cm rằng các phân số sau tối giản vs mọi số tự nhiên n
b,12n+1/30n+2
Vì 12n+1 là số lẻ
và 30n+2 là số chẵn
nên 12n+1 và 30n+2 là hai số nguyên tố cùng nhau
hay 12n+1/30n+2 là phân số tối giản
chứng minh các phân số sau tối giản với mọi số tự nhiên n
A=2n+1/3n+1 B=12n+1/30n+2
Xét A=2n+1/3n+1
Gọi d là ƯCLN của 2n+1 và 3n+1, ta có
2n+1 chia hết cho d \(\Rightarrow\)3(2n+1) chia hết cho d \(\Rightarrow\)6n+3 chia hết cho d (1)
3n+1 chia hết cho d \(\Rightarrow\)2(3n+1) chia hết cho d \(\Rightarrow\)6n+2 chia hết cho d (2)
Lấy (1) - (2), ta có:
6n+3-(6n+2) chia hết cho d \(\Rightarrow\)6n+3-6n-2 chia hết cho d \(\Rightarrow\)(6n-6n)+(3-2) chia hết cho d
\(\Rightarrow\)1 chia hết cho d \(\Rightarrow\)d=1
Vì ƯCLN(2n+1;3n+1)=1 nên 2n+1 và 3n+1 là hai số nguyên tố cùng nhau. Do đó A=2n+1/3n+1 là phân số tối giản (đpcm)
Xét B=12+1/30+1
Cách giải tương tự như trên, ta có 5(12n+1)-2(30n+2) chia hết cho d
\(\Rightarrow\)60n+5-(60n+4) chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow\)d=1
Suy ra B=12n+1/30n+2 là phân số tối giản (đpcm)
Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)
=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d
=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d
=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d
=> (6n + 4) - (6n + 3) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n + 1; 3n + 2) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản
b,
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
cm rằng các phân số sau tối giản vs mọi số tự nhiên n
d, 2n+1/2n^2-1
Chứng minh rằng các phân số sau tối giản với mọi số tự nhiên n:
a) \(\dfrac{3n+1}{5n+2}\) b) \(\dfrac{12n+1}{30n+2}\)
c)* \(\dfrac{n^3+2n}{n^4+3n^2+1}\) d) \(\dfrac{2n+1}{2n^2-1}\)
a) Gọi ƯCLN(3n+1;5n+2) là d
ta có: 3n+1 chia hết cho d => 15n + 5 chia hết cho d
5n + 2 chia hết cho d => 15n + 6 chia hết cho d
=> 15n + 6 - 15n - 5 chia hết cho d
=> 1 chia hết cho d
=> 3n+1/5n+2 là phân số tối giản
gọi d là ƯC(3n + 1; 5n + 2) (d thuộc Z)
\(\Rightarrow\hept{\begin{cases}3x+1⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+1\right)⋮d\\3\left(5n+2\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+5⋮d\\15n+6⋮d\end{cases}}}}\)
=> (15n + 5) - (15n + 6) ⋮ d
=> 15n + 5 - 15n - 6 ⋮ d
=> (15n - 15n) - (6 - 5) ⋮ d
=> 0 - 1 ⋮ d
=> 1 ⋮ d
=> d = 1 hoặc d = -1
vậy \(\frac{3n+1}{5n+2}\) là phân số tối giản với mọi n thuộc N
b) Gọi ƯCLN(12n+1;30n+2) là d
ta có: 12n + 1 chia hết cho d => 60n + 5 chia hết cho d
30n+2 chia hết cho d => 60n + 4 chia hết cho d
=> 60n +5 - 60n-4 chia hết cho d
=> 1 chia hết cho d
=> 12n+1/30n+2 là p/s tối giản
chứng minh rằng các phân số sau tối giản vs mọi số tự nhiên n:
\(\frac{n^3+2n}{n^4+3n^2+1}\)
Gọi d là ước chung của n^3 + 2n và n^4 + 3n^2 + 1. Ta có:
n^3 + 2n chia hết cho d => n(n^3 + 2n) chia hết cho d => n^4 + 2n^2 chia hết cho d (1)
n^4 + 3n^2 + 1 -(n^4 + 2n^2) = n^2 + 1 chia hết cho d => (n^2 + 1)^2 = n^4 + 2n^2 + 1 chia hết cho d (2)
Từ (1) và (2) suy ra :
(n^4 + 2n^2 + 1)- (n^4 + 2n^2) chia hết cho d => 1 chia hết cho d => d=+-1
Vậy phân số trên tối giản vì mẫu và tử có ước chung là +-1
Phân số trên sẽ tối giản vì không có bất kì các số nào có thể rút gọn với nhau .
Nếu như có thể thì khi ta cộng lại cũng không thể , vì đang rút được ta cộng một vào bất kì ( mẫu / tử ) đều khiến phép tính không thể rút gọn tiếp được nữa .
Vậy không thể rút gọn và phân số này đã tối giản
chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n:
n+1/ 2n+3
2n+1/ 3n+2
n/ n+1
a) Gọi d là Ư C L N ( n+1; 2n+3)
ta có: n +1 chia hết cho d => 2.(n+1) chia hết cho d => 2n + 2 chia hết cho d
2n + 3 chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản
b) Gọi d là Ư C L N ( 2n+1; 3n+2)
ta có: 2n+1 chia hết cho d => 3.(2n+1) chia hết cho d => 6n + 3 chia hết cho d
3n +2 chia hết cho d => 2.(3n+2) chia hết cho d => 6n + 4 chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{2n+1}{3n+2}\) là phân số tối giản
c) Gọi d là Ư C L N ( n; n+1)
ta có: n chia hết cho d
n + 1 chia hết cho d
=> n +1 - n chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{n}{n+1}\) là phân số tối giản
gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:
\(\text{(2n+3)-(n-1) ⋮d}\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow2n-2n+3-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n