Cho hình bình hành ABCD. Tập hợp các điểm M thỏa mãn M A → + M B → - M C → = M D → là?
A. một đường tròn.
B. một đường thẳng.
C. tập rỗng.
D. một đoạn thẳng.
Cho hình bình hành ABCD. Tập hợp các điểm M thỏa mãn M A → + M B → - M C → = M D →
A. một đường tròn.
B. một đường thẳng.
C. tập rỗng.
D. một đoạn thẳng.
Cho hình bình hành ABCD. Tập hợp các điểm M thỏa mãn M A → + M B → - M C → = M D → là?
A. một đường tròn
B. một đường thẳng.
C. tập rỗng.
D. một đoạn thẳng
Cho hình bình hành ABCD. Tập hợp tất cả các điểm M thỏa mãn đẳng thức M A → + M B → − M C → = M D → là
A. một đường tròn.
B. một đường thẳng.
C. tập rỗng.
D. một đoạn thẳng.
cho hình bình hành ABCD tập hợp các điểm M thỏa mãn \(\overrightarrow{|MA}+\overrightarrow{MB}|=|\overrightarrow{MC}+\overrightarrow{MD}|\)
Cho hình bình hành ABCD và các điểm M, N thỏa mãn A M → = 2 A B → + 3 A D → ; A N → = x A B → + 5 A D → . Để ba điểm M, N, C thẳng hàng thì:
A. x = 1
B. x = 3
C. x = 5
D. x = 7
38.
Gọi I là trung điểm AB và G là trọng tâm tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\\\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\end{matrix}\right.\)
\(3\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)
\(\Leftrightarrow3.\left|2\overrightarrow{MI}\right|=3\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)
\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=2.\left|3\overrightarrow{MG}\right|\)
\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=6\left|\overrightarrow{MG}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MI}\right|=\left|\overrightarrow{MG}\right|\)
\(\Leftrightarrow MI=MG\)
\(\Rightarrow\) Tập hợp M là đường trung trực của đoạn thẳng IG
Cho hình bình hành ABCD, có M, N, P, Q lần lượt là các các trung điểm của AB, BC, CA, AD. HÌNH BÌNH HÀNH ABCD PHẢI THỎA MÃN ĐIỀU KIỆN GÌ ĐỂ TỨ GIÁC MPMQ LÀ HÌNH CHỮ NHẬT , HÌNH THOI, HÌNH VUÔNG?
Dễ dàng thấy ngay rằng các đoạn QM, PN, QP, MN là đường trung bình của các tam giác ADB, CDB, ADC, ABC.
Vậy thì QM song song và bằng PN hay tứ giác MNPQ là hình bình hành.
+) Để hình bình hành MNPQ là hình bình chữ nhật thì \(QM\perp MN\Leftrightarrow AC\perp BD\Leftrightarrow\) Hình bình hành ABCD là hình thoi.
+) Để hình bình hành MNPQ là hình bình thoi thì QM = MN hay AC = BD \(\Leftrightarrow\) Hình bình hành ABCD là hình chữ nhật.
+) Để hình bình hành MNPQ là hình vuông thì nó phải là hình chữ nhật và hình thoi, hay hình bình hành ABCD cũng là hình chữ nhật và hình thoi. Nói cách khác, ABCD phải là hình vuông.
Bài 4. Cho ABCD là hình bình hành. Hai điểm M, N lần lượt chuyển động trên các đoạn thẳng AB, CD (M, N khác đỉnh của hình bình hành) thỏa mãn AM = CN. Chứng minh đường thẳng MN luôn đi qua một điểm cố định
Vì ABCD là hình bình hành => AB//CD mà AM thuộc AB; CN thuộc CD => AM//CN
Mà AM=CN
=> AMCN là hình bình hành (tứ giác có cặp cạnh đối // và = nhau là hình bình hành)
=> AC và MN là đường chéo của hbh AMCN
Gọi O là giao của AC và MN => O là trung điểm của AC và MN (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
A cố định C cố định => O cố định => MN luôn đi qua O cố định
cho hình bình hành ABCD có tâm O.Gọi M,N lần lượt là trung điểm của AD,BC.Tìm tất cả các vect u thỏa mãn vectơ u = 2ON