1. Cho A(3;1),B(-1;1),C(6;0). Tìm tọa độ đỉnh D của hình thang cân ABCD với cạnh đáy AB,CD.
2. Cho A(1;2),B(-1;0).Tìm tập hợp điểm M(x;y) thỏa mãn: MA^2=MB^2.
3. Cho A(1;2),B(3;4). Tìm M thuộc Ox sao cho M,A,B thẳng hàng.
GIÚP MÌNH VỚI , MÌNH ĐANG CẦN GẤP!!!!! --- CẢM ƠN!!!!!
Trong mặt phẳng tọa độ Oxy , cho các điểm A( -7; 3), B( 0;1 ), C( -4;2)
a) Chứng minh A, B, C là ba đỉnh của một tam giác
b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. Tìm tọa độ giao điểm hai đường chéo của hình bình hành ABCD
c) Tìm tọa độ điểm E sao cho B là trọng tâm \(\Delta ACE\)
d) Tìm tọa độ điểm M sao cho \(\overrightarrow{AM}=2\overrightarrow{BM}-3\overrightarrow{BC}\)
e) Tìm tọa độ điểm N trên trục hoành sao cho B, C, N thẳng hàng
f) Tìm K( -2, y) để A, B, K thẳng hàng
Cho các điểm A(2; 3), B(9; 4), M(5; y) và P(x; 2).
a, Tìm y để tam giác AMB vuông tại M;
b, Tìm x để ba điểm A, B và P thẳng hàng.
Cho hình bình hành ABCD có tâm I, đường thẳng qua B vuông góc với BD cắt AI tại M, đường thẳng qua D vuông góc với BD cắt AB tại N. Biết pt DM: x+y-4=0, điểm E(5;0) thuộc NI, trung điểm của BI là P(-1/2;-3). Tìm tọa độ A,B,C,D
Cho 4 điểm A, B, C, D không có 3 điểm nào thẳng hàng thỏa mãn \(\overrightarrow{AD}\) = \(\overrightarrow{BC}\). Khi đó ta có:
A. ABCD là hình bình hành. B. ABDC là hình bình hành.
C. ACBD là hình bình hành. D. ADBC là hình bình hành.
trong mặt phẳng tọa độ oxy, cho 3 điểm A (3;3) B (4;-2) C(-1;-1)
1. tính vecto AB và vecto BC từ đó suy ra A,B, C là ba đỉnh của một tam giác
2. Tìm tọa độ điểm M thỏa mãn vecto MA + 4MB - MC = 0
3. Cho hình bình hành ABCD. Gọi I là trung điểm cạnh bC và E là điểm xác định bởi vecto AE = 2/3AC. CMR: vecto DI = AB - 1/2AD và 3 điểm D, E, I thẳng hàng
Xác định tham số của giá trị m trong các trường hợp sau: a) (P): y= x^2+6x-3 và đường thẳng d: y= -2xm-m^2 cắt nhau tại 2 điểm phân biệt A,B sao cho biểu thức P= 5( xA+xB)-2xA.xB đạt giá trị lớn nhất b) (P): y= x^2-2x-2 và đường thẳng d: y= x+m cắt nhau tại 2 điểm phân biệt A,B sao cho OA^2+OB^2 đạt GTNN
[1] Cho tập hợp A = { x ∈ N | x là số nguyên nhỏ hơn 10 }. Tập A bằng tập nào sau đây?
A. Q = { 1; 2; 3; 5; 7 } B. M = { 1; 3; 4; 5 } C. P = { 0; 2; 3; 5; 7 } D. N = { 2; 3; 5; 7 }
Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.
A. AD BC . B. MQ PN . C. MN QP . D. AB DC .
Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng
A. HA CD và AD CH .
B. HA CD và DA HC .
C. HA CD và AD HC .
D. HA CD và AD HC và OB OD .
Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng
A. 1. B. 2. C. 2. D. 3.
Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm 4 , 3 . Độ dài của vectơ AB là
A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm
Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng
A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a
Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB . Độ dài vectơ AC là
A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c