Tính A=(2x+7/3x-y)/(2y-7/3y-x) với x-y=7 (^_^)
cho x-y=7. tính B= 3x-7/2x+y- 3y-7/2y+x
x-y=7
nên x=y+7
\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y-7}{2y+x}\)
\(=\dfrac{3\left(y+7\right)-7}{2\cdot\left(y+7\right)+y}-\dfrac{3y-7}{2y+y+7}\)
\(=\dfrac{3y+21-7}{2y+14+y}-\dfrac{3y-7}{3y+7}\)
\(=\dfrac{3y+14}{3y+14}-\dfrac{3y-7}{3y+7}\)
\(=1-\dfrac{3y-7}{3y+7}=\dfrac{3y+7-3y+7}{3y+7}=\dfrac{14}{3y+7}\)
cho x-y=7. tính B= 3x-7/2x+y- 3y-7/2y+x
B=\(\frac{3x-7}{2x+y}-\frac{3y+7}{2y+x}\)
=\(\frac{3x-\left(x-y\right)}{2x+y}-\frac{3y+\left(x-y\right)}{2y+x}\)
=\(\frac{3x-x+y}{2x+y}-\frac{3y+x-y}{2y+x}\)
=\(\frac{2x+y}{2x+y}-\frac{2x+x}{2x+x}\)
=1-1
=0
a. ( 4m - 2n )/( 4m + 5n ) với m/n = 1/5
b. (2x + 7) / (3x - y) + ( 2y - 7 ) / ( 3y - x ) với x - y = 7
\(\frac{4m-2n}{4m+5n}\) với \(\frac{m}{n}=\frac{1}{5}\)
Ta có : \(\frac{m}{n}=\frac{1}{5}\)hay \(\frac{m}{1}=\frac{n}{5}\)
Đặt \(\frac{m}{1}=\frac{n}{5}=k\Rightarrow\hept{\begin{cases}m=k\\n=5k\end{cases}}\)
Do đó \(\frac{4m-2n}{4m+5n}=\frac{4k-2\cdot5k}{4k+5\cdot5k}=\frac{4k-10k}{4k+25k}=\frac{-6k}{29k}=-\frac{6}{29}\)
b. \(\frac{2x+7}{3x-y}+\frac{2y-7}{3y-x}\)
Ta có : x - y = 7 => x = 7 + y
Do đó \(\frac{2x+7}{3x-y}+\frac{2y-7}{3y-x}=\frac{2\left(7+y\right)+7}{3\left(7+y\right)-y}+\frac{2y-7}{3y-\left(7+y\right)}\)
\(=\frac{14+2y+7}{21+3y-y}+\frac{2y-7}{3y-7-y}\)
\(=\frac{21+2y}{21+2y}+\frac{2y-7}{2y-7}=1+1=2\)
a) \(\frac{m}{n}=\frac{1}{5}\Rightarrow\frac{m}{1}=\frac{n}{5}\)
Đặt \(\frac{m}{1}=\frac{n}{5}=k\Rightarrow\hept{\begin{cases}m=k\\n=5k\end{cases}}\)
Thế vào ta được :
\(\frac{4m-2n}{4m+5n}=\frac{4k-2.5k}{4k+5.5k}=\frac{4k-10k}{4k+25k}=\frac{-6k}{29k}=-\frac{6}{29}\)
b) x - y = 7 => x = 7 + y
Thế vào ta được :
\(\frac{2x+7}{3x-y}+\frac{2y-7}{3y-x}=\frac{2\left(7+y\right)+7}{3\left(7+y\right)-y}+\frac{2y-7}{3y-\left(7+y\right)}\)
\(=\frac{21+2y}{21+2y}+\frac{2y-7}{3y-7-y}\)
\(=\frac{21+2y}{21+2y}+\frac{2y-7}{2y-7}=1+1=2\)
cho x-y =7. Tính giá trị biểu thức B=\(\frac{3x-7}{2x+y}-\frac{3y+7}{2y+x}\)
Cho x-y=7.Tinh B=(3x-7)/(2x-y) - (3y+7)/(2y+x)
Cho x-y=7.Tính giá trị biểu thức \(B=\frac{3x-7}{2x+y}-\frac{3y+7}{2y+x}.\)
Cho x-y = 7
Tính giá trị biểu thức B = \(\frac{3x-7}{2x+y}-\frac{3y+7}{2y+x}\)
Tính giá trị của biểu thức:
a) B = (4m - 2) : 4m + 5n với m/n = 1/5
b) C = (2x + 7) : (3x -y) +(2y-7):(3y-x) với x-y=7
Bài 1: Thực hiện phép tính
a) (x-4) (x+4) - (5-x) (x+1)
b) (3x^2 - 2xy + 4) + ( 5xy - 6x^2 - 7)
Bài 2: Rút gọn biểu thức
a) 3x^2 (2x + y) - 2y(4x^2 - y)
b) (x+3y) (x-2y) - (x^4 - 6x^2y^3): x^2y
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Bài 2:
a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)
= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2
= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2
= 6\(x^3\) - 5\(x^2\)y + 2y2